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We generalise the notion of fractal interpolation functions (FIFs) to allow data sets of the

form

{(x1,i1 , x2,i2 , . . . , xn,in , zi1 ,i2 ,...,in ); ik = 0, 1, . . . , Nk, k = 1, 2, . . . , n} ⊂ I × �,

where I = [0, 1]n. We introduce recurrent iterated function systems whose attractors G are

graphs of continuous functions f : I → �, which interpolate the data. We show that the

proposed constructions generalise the previously existed ones on �. We also present some

relations between FIFs and the Laplace partial differential equation with Dirichlet boundary

conditions. Finally, the fractal dimensions of a class of FIFs are derived and some methods

for the construction of functions of class Cp using recurrent iterated function systems are

presented.

1 Introduction

Fractal interpolation is an alternative to traditional interpolation techniques, which gives

a broader set of interpolants. Using this method, we can construct not only interpolants

with non-integral dimension (as its name implies) but also smooth, non-polynomial inter-

polants, or even splines and Hermite functions (however, most applications make use of

the fractal construction). Its main differences with the traditional interpolation techniques

consist (a) in the definition of a functional relation (see equation (3.5)), that implies a self

similarity in small scales; (b) in the constructive way (through iterations), that it is used

to compute the interpolant, instead of the descriptive one (usually a formula) provided by

the classical methods and (c) in the usage of some parameters, which we call vertical scal-

ing factors, that define the dimension of the interpolant. Fractal interpolation functions

(FIFs) are highly irregular and cannot be described using elementary functions such as

polynomials (excluding the trivial cases where the fractal function is actually a spline or

some other ordinary interpolant). As we mentioned above, they are constructed through

iterations, starting with an arbitrary function. The construction uses the well-known, in

the fractal literature, Deterministic Iterative Algorithm. This algorithm is often used to

construct fractal sets, which are determined through an iterated function system (IFS)
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Figure 1. The construction of a fractal interpolation function: (a) the initial arbitrary function;

(b) after one iteration; (c) after five iterations; and (d) after 15 iterations, the approximation of the

fractal interpolant is sufficient.

(a pair consisting of a complete metric space (X, ρ) together with a finite set of continu-

ous, contractive mappings – see Section 2 for more details). The algorithm starts with an

arbitrary, compact set and applies the maps of the IFS to the set successively (Figure 1).

To obtain the actual fractal interpolant, one need to continue the iterations indefinitely.

However, a small number of iterations usually gives a sufficient approximation.

Fractal interpolation functions have been used in approximation theory, in the modelling

of one-dimensional signals (especially in the case of signals that are highly irregular), in

computer graphics (to construct coastlines, mountain lines, surfaces), in the modelling

of the surfaces of minerals, in image compression, in remote sensing and in other

scientific applications. They were introduced by M. Barnsley [1] as attractors of IFSs.

Later in [3], the construction was generalised with the help of recurrent iterated function

systems (RIFSs). Both constructions, however, involve data points of the form {(xi, zi) ∈
I × �; i = 0, 1, . . . , N}, where I = [0, 1]. In the years that followed, several problems of

the construction of FIF were addressed by Barnsley and others. For example, the box-

counting dimension of some types of FIFs were studied in [1, 3, 4, 9, 14], the integrability
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and differentiability were studied in [5] and some other interesting issues were raised in

[10, 13, 15, 18]. Recently, it has been demonstrated that FIFs may be used to generalise

spline functions [7, 19, 20].

Nevertheless, the construction of FIFs remained restricted to the case of one-

dimensional data points. Several attempts were made to construct FISs by Massopust

and others [6, 12, 16, 17] in the case where the interpolation points or the vertical scaling

factors are confined. However, the general problem remains open. In most cases, the

construction uses, either interpolation points, which are restricted to be colinear in the

borders of I = [0, 1]2, or maps with equal vertical scaling factors. Our intention is to gen-

eralise these results to allow arbitrary data points that lie not only on �2 but also on �n.

Thus, in this article, we introduce a way of constructing FIFs that interpolate given data

points of the form {(x1,i1 , x2,i2 , . . . , xn,in , zi1 ,i2 ,...,in) ∈ I × �; ik = 0, 1, . . . , Nk, k= 1, 2, . . . , n},
where I = [0, 1]n. The proposed construction makes use of ordinary interpolants of points

of �n−1 to generate the fractal interpolant of some predefined points of �n. Section 2

contains the mathematical background on RIFS and Section 3 the main theorems, which

we deduced for the construction of FIFs. In Section 4, we present some special cases using

the theorems of Section 3. Next, in Section 5, the box-counting dimension for a class of

FIFs is determined to ensure that the proposed construction gives indeed fractal surfaces.

Finally, in Section 6, we present some theorems that enable us to construct Cp FIFs.

2 Recurrent iterated function systems

A hyperbolic IFS is defined as a pair consisting of a complete metric space (X, ρ)

together with a finite set of continuous contractive mappings wi : X → X, with respective

contraction factors si for i= 1, 2, . . . , N (N � 2). The attractor of a hyperbolic IFS is the

unique set E for which E= limk→∞ W
k(A0) for every starting compact set A0, where

W (A) =

N⋃
i=1

wi(A) for all A ∈ H(X),

and H(X) is the complete metric space of all non-empty compact subsets of X with

respect to the Hausdorff metric h. Iterated function systems are able to produce very

complicated attractors using only a handful of mappings.

A more general concept, which allows the construction of even more complicated sets,

is that of the RIFS, which consists of the IFS {X;wi, i= 1, 2, . . . , N} (or more briefly

{X;w1—N}), together with an irreducible row-stochastic matrix P : = (pν,µ ∈ [0, 1] :

ν, µ= 1, . . . , N), such that

N∑
µ=1

pν,µ = 1, ν = 1, . . . , N. (2.1)

The recurrent structure is given by the (irreducible) connection matrix C := (Cν,µ :

ν, µ= 1, 2, . . . , N), which is defined by

Cν,µ =

{
1, if pµ,ν > 0

0, if pµ,ν = 0
,
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where ν, µ= 1, 2, . . . , N. The transition probability for a certain discrete time Markov

process is pν,µ, which gives the probability of transfer into state µ given that the process

is in state ν. Condition (2.1) says that whichever state the system is in (say ν), a set of

probabilities is available that sum to 1 and describe the possible states to which the system

transits at the next step.

We define the mappings

Wi,j : H(X) → H(X), with Wi,j(A) =

{
wi(A), pj,i > 0

∅, pj,i = 0
, (2.2)

for all A ∈ H(X) and the metric space

H̃(X) = H(X)N = H(X) × H(X) × · · · × H(X) (2.3)

equipped with the metric

h̃

⎛
⎜⎜⎜⎝
⎛
⎜⎜⎜⎝
A1

A2

...

AN

⎞
⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎝
B1

B2
...

BN

⎞
⎟⎟⎟⎠
⎞
⎟⎟⎟⎠ = max{h(Ai, Bi); i = 1, 2, . . . , N}.

Next, we define the map

W : H̃(X) → H̃(X) : W

⎛
⎜⎜⎜⎝
A1

A2

...

AN

⎞
⎟⎟⎟⎠=

⎛
⎜⎜⎜⎝
W11 W12 . . . W1N

W21 W22 . . . W2N

...
...

...

WN1 WN2 . . . WNN

⎞
⎟⎟⎟⎠ ·

⎛
⎜⎜⎜⎝
A1

A2

...

AN

⎞
⎟⎟⎟⎠=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⋃
j∈I(1)

w1(Aj)⋃
j∈I(2)

w2(Aj)

... ⋃
j∈I(N)

wN(Aj)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where I(i) = {j : pj,i > 0}, for i= 1, 2, . . . , N. If wi are contractions, then W is a contraction

and there is E = (E1, E2, . . . , EN)t ∈ H̃(X) such that W (E) = E and Ei =
⋃
j∈I(i) wi(Ej), for

i= 1, 2, . . . , N. Then, the set G=
⋃N
i=1 Ei is called the attractor of the RIFS {X, w1—N, P }.

Evidently,
G = lim

n
An.

Let A ∈ H(X). We define the sequences {An}n∈� in H̃(X) and {An}n∈� in H(X)

as follows: A0 = (A,A, . . . , A)t, An = W (An−1) and An =
⋃N
i=1(An)i, for n ∈ �, where

An = ((An)1, (An)2, . . . , (An)N).

3 Fractal interpolation functions

Consider a data set

∆ = {(x1,i1 , x2,i2 , . . . , xn,in , zi1 ,i2 ,...,in) ∈ I × �; ik = 0, 1, . . . , Nk, k = 1, 2, . . . , n},

such that 0= xk,0 < xk,1 < · · · < xk,Nk
= 1, Nk ∈ �, for k= 1, 2, . . . , n, where I = [0, 1]n,

which contains in total (N1 + 1) · (N2 + 1) · · · (Nn + 1) =
∏n

k=1(Nk + 1) points. In addition,
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consider a data set ∆̂ ⊂ ∆

∆̂ = {(x̂1,j1 , x̂2,j2 , . . . , x̂n,jn , ẑj1 ,j2 ,...,jn) ∈ I × �; jk = 0, 1, . . . ,Mk, k = 1, 2, . . . , n},

such that 0= x̂k,0 < x̂k,1 < . . . < x̂k,Mk
= 1, Mk ∈ � for k= 1, 2, . . . , n, which contains in

total
∏n

k=1(Mk + 1) points. To simplify the notation, we set

i = (i1, i2, . . . , in) ∈ {0, 1, . . . , N1} × {0, 1, . . . , N2} × · · · × {0, 1, . . . , Nn} = �0,

j = (j1, j2, . . . , jn) ∈ {0, 1, . . . ,M1} × {0, 1, . . . ,M2} × · · · × {0, 1, . . . ,Mn} = �0,

and

�1 = {1, 2, . . . , N1} × {1, 2, . . . , N2} × · · · × {1, 2, . . . , Nn},
�1 = {1, 2, . . . ,M1} × {1, 2, . . . ,M2} × · · · × {1, 2, . . . ,Mn}.

Thus, we may rewrite ∆ and ∆̂ as follows:

∆ = {(xi , zi) ∈ I × �, i ∈ �0}, where xi = (x1,i1 , x2,i2 , . . . , xn,in ) ∈ I,

∆̂ = {(x̂j , ẑj ) ∈ I × �, j ∈ �0}, where x̂j = (x̂1,j1 , x̂2,j2 , . . . , x̂n,jn ) ∈ I.

We also define the sets

∆′ = {xi; i ∈ �0}, ∆̂′ = {x̂j ; j ∈ �0}.

Let 〈en,k; k= 1, 2, . . . , n〉 be the standard basis of �n. Furthermore, for any x ∈ �n,

x = (x1, x2, . . . , xn), we use the notations proj−λx, projλx as follows:

proj−λx = (x1, x2, . . . , xλ−1, xλ+1, . . . , xn) ∈ �n−1,

projλx = (x1, x2, . . . , xλ−1, 0, xλ+1, . . . , xn) ∈ �n.

The points of ∆′ divide [0, 1]n into
∏n

k=1Nk regions

Ii = [x1,i1−1, x1,i1 ] × [x2,i2−1, x2,i2 ] × · · · × [xn,in−1, xn,in ],

for all i = (i1, i2, . . . , in) ∈ �1, while the points of ∆̂′ divide [0, 1]n into
∏n

k=1Mk domains

Jj = [x̂1,j1−1, x̂1,j1 ] × [x̂2,j2−1, x̂2,j2 ] × · · · × [x̂n,jn−1, x̂n,jn ],

for all j = (j1, j2, . . . , jn) ∈ �1. We make the additional assumption that for every j ∈ �1,

there is at least one interpolation point that lies in the interior of Jj × �. Furthermore,

we define a labelling map J : �1 → �1 : J(i) = j and the 1–1 functions Φ and Φ̂ (an

enumeration of the sets �1 and �1, respectively) such that

Φ : �1 →
{

1, 2, . . . ,

n∏
k=1

Nk

}
: Φ(i) = i1 + (i2 − 1)N1 + · · · + (in − 1)Nn−1Nn−2 · · ·N1,

Φ̂ : �1 →
{

1, 2, . . . ,

n∏
k=1

Mk

}
: Φ̂(j) = j1 + (j2 − 1)M1 + · · · + (jn − 1)Mn−1Mn−2 · · ·M1.



454 P. Bouboulis and L. Dalla

We define the
∏n

k= 1Nk ×
∏n

k= 1Nk stochastic matrix P by

pν,µ =

{
1
γν
, if IΦ−1(ν) ⊆ JJ(Φ−1(µ))

0, otherwise,
, (3.1)

where γν is the number of non-zero elements of its ν-th row. Consequently, the connection

matrix C is defined as in Section 2 and the connection vector V = {v1, v2, . . . , vN1 ···Nn
} as

follows: vν = Φ̂(J(Φ−1(ν))), ν= 1, 2, . . . , N1 · · ·Nn.

Next, we consider
∏n

k= 1Nk mappings of the form

Wi : Ii × � → JJ(i) × � : Wi

(
x

z

)
=

(
T i(x)

Fi(x, z)

)
=

(
T i(x)

siz + Qi(x)

)
, (3.2)

with

T i(x) =

⎛
⎜⎜⎜⎝
T1,i(x1)

T2,i(x2)
...

Tn,i(xn)

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝
a1,ix1 + b1,i

a2,ix2 + b2,i

...

an,ixn + bm,i

⎞
⎟⎟⎟⎠ ,

for all x = (x1, x2, . . . , xn) ∈ [0, 1]n, Qi a Lipschitz continuous function on [0, 1]n, and

si ∈ (−1, 1), for all i ∈ �1. The parameters si , i ∈ �1 are called vertical scaling factors.

We confine the map Wi so that it maps the interpolation points that lie on the vertices

of JJ(i) to the interpolation points that lie on the vertices of Ii . Hence, we obtain the

following relations:

Tk,i(x̂k,jk−1) = xk,ik−1, Tk,i(x̂k,jk ) = xk,ik , k = 1, 2, . . . , n

and

Fi

((
x̂J(i)−

∑n
λ=1 δλen,λ

, ẑJ(i)−
∑n

λ=1 δλen,λ

))
= zi−

∑n
λ=1 δλen,λ

,

for all δ = (δ1, δ2, . . . , δn) ∈ {0, 1}n.
It is easy to show that there exists a metric ρθ (equivalent with the Euclidean metric)

such that Wi is a contraction for all i ∈ �1. To this end, consider the metric ρ1 defined

on [0, 1]n as follows:

ρ1(x, y) = |x1 − y1| + |x2 − y2| + · · · + |xn − yn|,

and the metric

ρθ((x, z), (y, z
′)) = ρ1(x, y) + θ|z − z′|

defined on [0, 1]n × �, where x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) and θ is specified below.

Then,

ρθ(Wi(x, z),Wi(y, z
′)) � ρ1(T i(x),T i(y)) + θ|si ||z − z′| + θ|Qi(x) − Qi(y)|

� aρ1(x, y)| + θ|si ||z − z′| + θcρ1(x, y)

� (a+ θc)ρ1(x, y) + θ|si ||z − z′|,
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where a= max{ak,i; k= 1, 2, . . . , n, i ∈ �1} and c such that |Qi(x) −Qi(y)| � cρ1(x, y), for

all x, y ∈ [0, 1]n and i ∈ �1. If we choose θ > 0 such that a+ cθ < 1, then

ρθ(Wi(x, z),Wi(y, z
′)) � q · ρθ((x, z), (y, z′)),

where q = max{a + θc, |si |; i ∈ �1}. This means that Wi is a contraction with respect to

the metric ρθ . Thus, W (as defined in Section 2) is also a contraction with respect to the

metric h̃. Finally, we define the diagonal matrix S = diag(sΦ−1(1), sΦ−1(2), . . . , sΦ−1(N)), where

N=
∏n

k=1Nk and the vector s = (sΦ−1(1), sΦ−1(2), . . . , sΦ−1(N)).

As stated above, the RIFS {[0, 1]n × �,Wi , P ; i ∈ �1} has a unique attractor G.

In general, G is a compact subset of �n+1 containing the points of ∆. The following

proposition gives conditions so that G is the graph of a continuous function f. These

conditions involve points that lie on ∂Ii × �, for all i ∈ �1, (where ∂Ii is the boundary

of Ii).

Proposition 3.1 Let h ∈ C([0, 1]n) be a Lipschitz function that interpolates the points of ∆

(i.e. h(xi) = zi , i ∈ �0). If the RIFS defined above satisfies the conditions

Fi

(
projλx + x̂λ,jλen,λ, h(projλx + x̂λ,jλen,λ)

)
= h

(
projλT i(x) + xλ,iλen,λ

)
, (3.3)

Fi

(
projλx + x̂λ,jλ−1en,λ, h(projλx + x̂λ,jλ−1en,λ)

)
= h

(
projλT i(x) + xλ,iλ−1en,λ

)
, (3.4)

where j = J(i), for all x ∈ JJ(i), i = (i1, i2, . . . , in) ∈ �1, λ= 1, 2, . . . , n, then its attractor G is

the graph of a continuous function f that interpolates the data points. Moreover, f satisfies

the functional relation

f(x) = Fi

(
T −1

i (x), f
(
T −1

i (x)
))
, (3.5)

for all x ∈ Ii , i ∈ �1.

Proof Let 〈C([0, 1]n), ‖ · ‖∞〉 be the complete metric space of the continuous functions

defined on [0, 1]n, where

‖g‖∞ = max{|g(x)|, x ∈ [0, 1]n}.
The set F = {g ∈ C([0, 1]n) : g satisfies (3.3)–(3.4)} is a non-empty (h ∈ F) complete

metric subspace. We define the Read-Bajraktarevic operator T : F → F by

Tg(x) = Fi

(
T −1

i (x), g
(
T −1

i (x)
))
,

if x ∈ Ii . In view of (3.3)–(3.4), Tg is well defined at [0, 1]n. In addition, it is easy to verify

that T is a contraction in F. Hence, T possesses a unique fixed point f ∈ F, such that

Tf= f. With a little bit of effort, we may deduce that the graph of f is the attractor of

the RIFS {[0, 1]n × �,Wi , P ; i ∈ �1} (see also [4, 8]). �

We refer to functions whose graph arises as attractor of a RIFS, which satisfies the

conditions of the above proposition, as FIFs.

The relations (3.3)–(3.4) define a functional system that consists of 2 · n ·
∏n

k= 1Nk

equations, which associate Fi with h (only at points of ∂Ii). Considering that Fi(x, z) = siz+
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Qi(x), we obtain the system:

Qi

(
projλx + x̂λ,jλen,λ

)
= h

(
projλT i(x) + xλ,iλen,λ

)
− si · h(projλx + x̂λ,jλen,λ) (3.6)

Qi

(
projλx + x̂λ,jλ−1en,λ

)
= h

(
projλT i(x) + xλ,iλ−1en,λ

)
− si · h(projλx + x̂λ,jλ−1en,λ), (3.7)

for all x ∈ JJ(i), i = (i1, i2, . . . , in) ∈ �1, j = J(i), λ= 1, 2, . . . , n, where si are free parameters.

Remark 3.1 In Proposition 3.1, we stated that h must satisfy a Lipschitz condition. This

is necessary because otherwise Qi will not satisfy a Lipschitz condition either.

The following corollary generalises in �n an example given in [1] for n = 1.

Corollary 3.1 Let h ∈ C([0, 1]n) be a Lipschitz function that interpolates the points of ∆.

Consider the case

Qi(x) = H(T i(x)) − si · B(x), for all x ∈ JJ(i), i ∈ �1, (3.8)

where H,B are Lipschitz functions defined on [0, 1]n such that

H(x) = h(x), for x ∈ ∂Ii ,

B(x) = h(x), for x ∈ ∂JJ(i).

The unique attractor G of the corresponding RIFS {[0, 1]n × �,Wi , P ; i ∈ �1} is the graph

of a continuous function f that interpolates the points of ∆ and satisfies

f(x) = H(x) + si(f − B) ◦ T −1
i (x), for all x ∈ Ii , (3.9)

i ∈ �1.

Proof The proof is straightforward. We may easily confirm that the conditions (3.3)–(3.4)

are satisfied. �

Remark 3.2 The FIF f associated with the RIFS of Corollary 3.1 satisfies the inequality

‖f −H‖ �
|s|∞

1 − |s|∞
‖H − B‖∞, (3.10)

where |s|∞ = max{|si |, i ∈ �1}, as we may easily conclude using relation (3.9).

4 Some special cases

In Section 3, we demonstrated that from any multivariate interpolant h one may construct

FIFs in more than one way. However, we did not present any specific method that gives

the maps of the RIFS, if one chooses a specific interpolant h. Here, we address this

problem by presenting two distinct classes of constructions.
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Let C̃∆ be the set of all the continuous functions defined on ∪i∈�1
∂Ii , which interpolate

the points of ∆. Using Proposition 3.1, we may proceed with the following construction.

We choose h ∈ C̃∆ a priori to be a Lipschitz function, which interpolates the points

of ∆ and define Qi from (3.6)–(3.7) on ∪i∈�1
∂Ii . Then Qi are Lipschitz functions (on

∂JJ(i)) with constants at most 2L for all i ∈ �1, where L is the Lipschitz constant of h.

Consequently, Qi may be extended to JJ(i) without increasing its Lipschitz constant (see

for example [11], p. 145). Thus, the RIFS consists of contractions, and therefore it has

a unique attractor G as stated above. Hence, using Proposition 3.1, we deduce that G

is the graph of a continuous function that interpolates the data. However, the extension

mentioned above is not trivial. Note that Proposition 3.1 involves only the points of ∂Ii ,

i ∈ �1, and therefore the values of h on the interior of Ii are not taken into account.

For that reason, we took h to be in C̃∆. Equivalently, one may assume that h consists of

interpolants of �n−1 (i.e. functions that interpolate the points of the set ∆κ,λ that consists

of the points of ∆ that their κ-th ordinate is fixed and equal with xκ,λ, for λ= 1, 2, . . . , Nκ,

κ= 1, 2, . . . , n). This becomes more comprehensible in the examples given later.

On the other hand, for the second class, one chooses a function H ∈ C([0, 1]n) that

interpolates ∆ and a function B ∈ C([0, 1]n) that interpolates ∆̂ such that B|Jj
=H |Jj

, for

all j ∈ �1. Using Corollary 3.1, a FIF is easily constructed.

Below, we give some special cases that generalise well-known constructions on � and

some others that are completely new. The first two cases use functions h defined only on

∪i∈�1
Ii , while the third case uses functions that are defined on [0, 1]n.

4.1 Construction I: A generalisation of affine FIFs

Let h ∈ C̃∆, then we may deduce a generalisation of affine FIFs as follows. We consider

the special case where Qi are of the following form:

Qi(x) =

n∑
k=1

rk,i(proj−kx)xk +

n∑
k=1

qk,i(proj−kx), (4.1)

for all x = (x1, x2, . . . , xn) ∈ JJ(i), where rk,i , qk,i : proj−k(JJ(i)) → Ii are arbitrary continuous

functions such that

rk,i
(
proj−k,λx + x̂λ,jλen−1,λ

)
= rk,i

(
proj−k,λx + x̂λ,jλ−1en−1,λ

)
= 0,

qk,i
(
proj−k,λx + x̂λ,jλen−1,λ

)
= qk,i

(
proj−k,λx + x̂λ,jλ−1en−1,λ

)
= 0,

for all i ∈ �1, x ∈ JJ(i), λ= 1, 2, . . . , n− 1, k= λ+ 1, λ+ 2, . . . , n. We show that, under the

above constraints, if we choose h a priori as a Lipschitz function, then using relations

(3.6)–(3.7) we may compute Qi in terms of the values of h|∂JJ(i)
and the vertical scaling

factors si , i ∈ �1, in a unique way.

Evidently, for λ = 1, the system (3.6)–(3.7) produces the two equations:

sih(proj1x + x̂1,j1en,1) + r1,i(proj−1x)x̂1,j1 + q1,i(proj−1x) = h
(
proj1T (x) + x1,i1en,1

)
,

sih(proj1x + x̂1,j1−1en,1) + r1,i(proj−1x)x̂1,j1−1 + q1,i(proj−1x) = h
(
proj1T (x) + x1,i1−1en,1

)
,
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for all i ∈ �1. Therefore,

r1,i(proj−1x) =
h
(
proj1T (x) + x1,i1en,1

)
− h

(
proj1T (x) + x1,i1−1en,1

)
x̂1,j1 − x̂1,j1−1

− si

h
(
proj1x + x̂1,j1en,1

)
− h

(
proj1x + x̂1,j1−1en,1

)
x̂1,j1 − x̂1,j1−1

,

q1,i(proj−1x) = h(proj1T (x) + x1,i1−1en,1) − sih(proj1T (x) + x̂1,j1−1en−,1)

− r1,i(proj−1x)x̂1,j1−1,

for all x ∈ JJ(i).

In general, for λ � 2, we have

sih(projλx + x̂λ,jλen,λ) +

λ−1∑
k=1

rk,i(proj−k,λx + x̂λ,jλen,λ)xk + rλ,i(proj−λx)x̂λ,jλ

+

λ−1∑
k=1

qk,i(proj−k,λx + x̂λ,jλen−1,λ) + qλ,i(proj−λx) = h(projλT (x) + xλ,iλen,λ)

and

sih
(
projλx + x̂λ,jλ−1en,λ

)
+

λ−1∑
k=1

rk,i(proj−k,λx + x̂λ,jλ−1en−1,λ)xk + rλ,i(proj−λx)x̂λ,jλ−1

+

λ−1∑
k=1

qk,i
(
proj−k,λx + x̂λ,jλ−1en−1,λ

)
+ qλ,i(proj−λx) = h

(
projλT (x) + xλ,iλ−1en,λ

)
.

Hence,

rλ,i(proj−λx) =
h
(
projλT (x) + xλ,iλen,λ

)
− h

(
projλT (x) + xλ,iλ−1en,λ

)
x̂λ,jλ − x̂λ,jλ−1

− si
h(projλx + x̂λ,jλen,λ) − h(projλx + x̂λ,jλ−1en,λ)

x̂λ,jλ − x̂λ,jλ−1
(4.2)

−
λ−1∑
k=1

rk,i(proj−k,λx + x̂λ,jλen−1,λ) − rk,i(proj−k,λx + x̂λ,jλ−1en−1,λ)

x̂λ,jλ − x̂λ,jλ−1
xk

−
λ−1∑
k=1

qk,i(proj−k,λx + x̂λ,jλen−1,λ) − qk,i(proj−k,λx + x̂λ,jλ−1en−1,λ)

x̂λ,jλ − x̂λ,jλ−1

and

qλ,i(proj−λx) = h(projλTi(x) + xλ,iλ−1en,λ) − sih(projλx + x̂λ,jλ−1en,λ)

−
λ−1∑
k=1

rk,i(proj−k,λx + x̂λ,jλ−1en−1,λ)xk − rλ,i(proj−λx)x̂λ,jλ−1 (4.3)

−
λ−1∑
k=1

qk,i(proj−k,λx + x̂λ,jλ−1en−1,λ),

for all x = (x1, . . . , xn), i ∈ �1.
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The functions rλ,i , qλ,i are Lipschitz for all i ∈ �1, λ= 1, 2, . . . , n, since h is Lipschitz.

Hence, Qi is also Lipschitz, for i ∈ �1. Therefore, according to Proposition 3.1, the

attractor of the RIFS is the graph of a continuous function f : [0, 1]n → �. We emphasise

that the functions rλ,i , qλ,i (hence the function Qi) are determined only from the values of

h on ∪i∈�1
∂Ii .

One may select h as any multivariate interpolant. One possible selection that we

use in our examples follows. Let i ∈ �1 and consider the multivariate function of the

form

ui(x) =
∑

k∈{0,1}n
αi,kx

k1

1 x
k2

2 · · · xknn , (4.4)

where k = (k1, k2, . . . , kn) ∈ {0, 1}n, for all x ∈ Ii . For example, for n= 1, ui is the affine

function ui(x) = αx + β and for n= 2, ui is the bivariate function ui(x, y) = α1x + α2y +

α3xy + α4. If we presume that ui interpolates the points of ∆, whose projections on [0, 1]n

are the vertices of Ii , then we obtain a linear system

ui

(
xi−

∑n
λ=1 δλen,λ

)
= zi−

∑n
λ=1 δλen,λ

,

for all δ = (δ1, δ2, . . . , δn) ∈ {0, 1}n, which consists of 2n equations. This system can always

be solved for the map’s parameters αi,k, k ∈ {0, 1}n. One possible selection of h is

h|Ii
= ui |Ii

.

Keep in mind, however, that only the values of h on the boundaries of Ii , i ∈ A1 are

taken into account.

Example 1 For n = 1, relation (4.1) takes the form:

Qi(x) = rix+ qi,

for i= 1, 2, . . . , N1, x ∈ JJ(i). This selection gives the well-known piecewise self-affine FIF,

which has been extensively studied [3, 18]. In this case, h is defined only on {x0, x1, . . . , xN},
therefore only the values z0 = h(x0), z1 = h(x1), . . . , and zN = h(xN) are taken into ac-

count. In Figure 2, two FIFs, which correspond to the same selection of ∆ and ∆̂, are

shown.

Example 2 For n = 2, we obtain

∆ = {(xi1 , yi2 , zi1 ,i2 ) ∈ I × �; ik = 0, 1, . . . , Nk, k = 1, 2},
∆̂ = {(x̂j1 , ŷj2 , ẑj1 ,j2 ) ∈ I × �; jk = 0, 1, . . . ,Mk, k = 1, 2},
i = (i1, i2) ∈ {0, 1, . . . , N1} × {0, 1, . . . , N2} = �0,

j = (j1, j2) ∈ {0, 1, . . . ,M1} × {0, 1, . . . ,M2} = �0,

�1 = {1, 2, . . . , N1} × {1, 2, . . . , N2},
�1 = {1, 2, . . . ,M1} × {1, 2, . . . ,M2}.
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Figure 2. The two FIFs shown above interpolate the points of the same set ∆ (consisting of six

points). The difference is due to the selection of two distinct stochastic matrices.

In this case, relation (4.1) takes the form

Qi(x, y) = r1,i(y)x+ r2,i(x)y + q1,i(y) + q2,i(x),

for i ∈ �1, (x, y) ∈ JJ(i), where

r1,i(y) =
h(xi1 , T2,i(y)) − h(xi1−1, T2,i(y))

x̂j1 − x̂j1−1
− si

h(x̂j1 , y) − h(x̂j1−1, y)

x̂j1 − x̂j1−1
,

q1,i(y) = h(xi1−1, T2,i(y)) − sih(x̂j1−1, y) − r1,i(y)x̂j1−1,

r2,i(x) =
h(T1,i(x), yi2 ) − h(T1,i(x), yi2−1)

ŷj2 − ŷj2−1
− si

h(x, ŷj2 ) − h(x, ŷj2−1)

ŷj2 − ŷj2−1

− r1,i(ŷj2 ) − r1,i(ŷj2−1)

ŷj2 − ŷj2−1
x− q1,i(ŷj2 ) − q1,i(ŷj2−1)

ŷj2 − ŷj2−1
,

q2,i(x) = h(T1,i(x), yi2−1) − sih(x, ŷj2−1) − r1,i(ŷj2−1)x− r2,i(x)ŷj2−1 − q1,i(ŷj2−1).

The above equations define a RIFS on �3 that has a unique attractor G, which is the

graph of a continuous function f : [0, 1]2 → �. We refer to an attractor of this nature as

FIS. Clearly, the construction of f depends on the selection of h. One might say that h

consists of one-dimensional interpolants, that connect the points of ∆ (Figures 3–5). If we

fix ∆, ∆̂, then for any Lipschitz function h ∈ C̃∆ that interpolates ∆ and for any selection

of vertical scaling factors s, we can construct a FIS fh,s that also interpolates ∆.

If we choose h as in (4.4), then we are led to a major generalisation of [6]. In this

case, the graph of h on ∂Ii is a closed polygonal line that connects the four vertices

of ∆, whose projections are the vertices of ∂Ii . In fact, if the interpolation points that

lie inside ∆ ∩ [x̂j1−1, x̂j1 ] × {ŷj ′′ } × � or ∆ ∩ {x̂j ′ } × [ŷj2−1, ŷj2 ] × � are collinear, for all

j = (j1, j2) ∈ �1, (j ′, j ′′) ∈ �0, then it is easy to show that the above construction is

identical to the one presented in [6]. Indeed, in this case, h(xi1 , T2,i(y)) and h(xi1−1, T2,i(y))

are affine functions of y and h(T1,i(x), yi2 ) and h(T1,i(x), yi2−1) are affine functions of x.
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Figure 3. A FIS that interpolates 5 × 5 interpolation points (see Table 1). The values of the

interpolation points are shown with dots. The values of h at ∂Ii , i ∈ �1, (i.e. the one-dimensional

interpolants) are polygonal lines and they are shown in light grey.

Figure 4. A FIS that interpolates 9 × 9 interpolation points (see Table 2). The values of the

interpolation points are shown with dots. The values of h at ∂Ii , i ∈ �1, (i.e. the one-dimensional

interpolants) are polygonal lines and they are shown in light grey.
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Figure 5. A FIS that interpolates 9 × 9 interpolation points. The values of the interpolation points

are shown with dots. The values of h at ∂Ii , i ∈ �1, (i.e. the one-dimensional interpolants) are

hermite interpolation functions (see also Table 3).

Hence, r1,i(y), r2,i(x), q1,i(y) and q2,i(x) are also affine functions, and Qi takes the form

Qi(x) = a0 + a1x+ a2y + a3xy.

Using equations (3.6)–(3.7), we deduce that

Qi(x̂j1−1, ŷj2−1) = h(xi1−1, yi2−1) − si · h(x̂j1−1, ŷj2−1) = zi1−1,i2−1 − si ẑj1−1,j2−1,

Qi(x̂j1−1, ŷj2 ) = h(xi1−1, yi2 ) − si · h(x̂j1−1, ŷj2 ) = zi1−1,i2 − si ẑj1−1,j2 ,

Qi(x̂j1 , ŷj2−1) = h(xi1 , yi2−1) − si · h(x̂j1 , ŷj2−1) = zi1 ,i2−1 − si ẑj1 ,j2−1,

Qi(x̂j1 , ŷj2 ) = h(xi1 , yi2 ) − si · h(x̂j1 , ŷj2 ) = zi1 ,i2 − si ẑj1 ,j2 .

By the uniqueness of the solution of the above system, we have the result. Figures 3

and 4 show FISs defined on arbitrary interpolation points using this form of h (see also

tables 1, 2).

In Figure 5, h is chosen such that its intersection with each one of the planes x = xi,

y= yj , i= 0, 1, . . . , N1, j= 0, 1, 2, . . . , N2 are Hermite-type polynomials (of degree 3), which

interpolate the corresponding points of ∆. For this purpose, we added to the interpolation

points arbitrary values for the partial derivatives of h as shown in Table 3. One may

choose h such that its intersections with the planes given above are splines (of any type)

or any other interpolant.

4.2 Construction II: Using partial differential equations

Next, we work with interpolants h ∈ C̃k
∆′ (i.e. functions h that are defined only on

∪i∈�1
∂Ii and have continuous partial derivatives up to k-th order). Let R([0, 1]n) be the

set containing all the subsets of [0, 1]n of the form

[a1, b1] × [a2, b2]×, . . . ,×[an, bn]
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Table 1. The interpolation points, the vertical scaling factors and the connection vector

used for the RIFS shown in Figure 3. The points of ∆̂ are shown with bold characters.

∆
x

0 256
4

2 256
4

3 256
4

256
0 100 090 120 100 090

256
6

115 130 130 100 110
y 2 256

6
120 110 140 126 100

3 256
6

105 120 130 140 115
256 100 115 120 095 100

S =

⎛
⎜⎝

0.45 0.55 −0.5 0.35
0.5 −0.85 0.75 −0.75

−0.45 0.85 −0.45 0.5
−0.65 −0.55 0.45 0.25

⎞
⎟⎠

V = (2, 1, 4, 3, 4, 1, 3, 2, 1, 4, 3, 2, 2, 1, 3, 4)

Table 2. The interpolation points, the vertical scaling factors and the connection vector

used for the RIFS shown in Figure 4. The points of ∆̂ are shown with bold characters.

∆
x

0 256
8

2 256
8

3 256
6

4 256
8

5 256
8

6 256
8

7 256
8

256
0 100 105 115 120 090 105 110 115 110

256
8

095 080 105 070 100 120 105 120 105
2 256 098 095 100 115 110 105 095 095 105
3 256

8
105 110 105 130 100 120 095 090 095

y 4 256
8

120 115 100 095 080 095 115 095 090
5 256

8
115 120 100 110 090 070 090 070 100

6 256
8

125 100 090 095 105 090 085 095 115
7 256

8
105 090 080 080 090 120 090 110 110

256 090 080 090 075 080 095 100 095 085

S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

+0.55 +0.55 −0.50 +0.65 +0.45 −0.40 −0.47 +0.32
+0.50 −0.85 +0.75 −0.55 −0.40 +0.34 −0.41 +0.65
−0.55 +0.45 −0.45 +0.50 −0.74 +0.72 −0.57 −0.43
−0.95 −0.55 +0.75 −0.65 +0.52 −0.35 +0.53 −0.45
+0.65 +0.55 −0.60 +0.85 +0.65 −0.40 −0.67 +0.32
+0.50 −0.45 +0.55 −0.75 −0.60 +0.34 −0.61 +0.45
−0.55 +0.45 −0.65 +0.50 −0.54 +0.75 −0.47 −0.43
−0.65 −0.55 +0.75 −0.65 +0.52 −0.75 +0.63 −0.25

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

V = (1, 5, 10, 4, 8, 12, 5, 2, 7, 11, 8, 15, 16, 3, 9, 6,
10, 11, 9, 5, 12, 5, 8, 1, 4, 9, 10, 16, 11, 3, 8, 2,
4, 7, 1, 10, 15, 12, 6, 15, 1, 5, 10, 4, 8, 12, 5, 2,
7, 11, 8, 15, 16, 3, 9, 6, 10, 11, 9, 5, 12, 5, 8, 1)

and a k-th order partial differential equation (PDE) defined on the set R ∈ R([0, 1]n) such

that its solution g satisfies

g|∂R = v, (4.5)

where v ∈ Ck(∂R). Assuming that the PDE is uniquely solvable for any R ∈ R([0, 1]n)

and v ∈ Ck(∂R) and that the solution is a Lipschitz function, we consider the
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Table 3. The interpolation points used for the RIFS shown in Figure 5. The points of ∆̂ are

shown with bold characters. To construct h on the borders of the grid, we used Hermite-type

interpolation polynomials. The vertical scaling factors and the connection vector are the same

as in Table 2.

∆
x

0 256
8

2 256
8

3 256
6

4 256
8

5 256
8

6 256
8

7 256
8

256
0 100 105 115 120 090 105 110 115 110

256
8

095 080 105 070 100 120 105 120 105
2 256 098 095 100 115 110 105 095 095 105
3 256

8
105 110 105 130 100 120 095 090 095

y 4 256
8

120 115 100 095 080 095 115 095 090
5 256

8
115 120 100 110 090 070 090 070 100

6 256
8

125 100 090 095 105 090 085 095 115
7 256

8
105 090 080 080 090 120 090 110 110

256 090 080 090 075 080 095 100 095 085
∂h
∂x
, ∂h

∂y

x

0 256
8

2 256
8

3 256
6

4 256
8

5 256
8

6 256
8

7 256
8

256
0 −20, 10 −50, −20 50, 50 30, 40 −50, −30 20, 30 50, −60 −10, 40 10, 20

256
8

10, 10 −20, 10 50, −60 40, 40 −30, 20 30, 50 −60, 20 40, −50 20, −10
2 256 50, 10 20, 10 50, −20 −10, 50 10, 40 10, −60 −20, −40 50, 60 40, 50
3 256

8
−60, −20 −40, 50 60, 40 −50, −60 20, 40 50, 60 −10, 50 −10, 20 10, 50

y 4 256
8

−60, 10 40, 20 20, 50 50, 40 −20, −30 50, 30 −10, −60 10, 40 10, 20
5 256

8
20, −40 −50, 20 40, 50 −60, 20 40, 50 60, −10 50, 10 20, 10 50, −20

6 256
8

10, 50 10, 40 10, −60 −20, 40 50, −60 40, 50 −30, 20 −30, −50 −60, −10
7 256

8
−40, 10 20, −50, −50, −60 20, 40 50, 20 10, −50 10, 20 10, 50 −20, −10

256 50, −10 −40, 10 60, −20 40, 50 −60, 40 50, −60 −20, 40 50, −60 −10, 50

operator

PR : Ck(∂R) → Ck(R) : PR(v) = g,

that assigns any function v defined on ∂R to the solution g of the corresponding PDE

with boundary conditions as in (4.5). We study the case where Qi(x) =H(T i(x))− si ·B(x),

for all x ∈ JJ(i), i ∈ �1, as in Corollary 3.1, where

H |Ii
= PIi

(
h|∂Ii

)
,

B|J(i) = PJJ(i)

(
h|∂JJ(i)

)
,

for all i ∈ �1. In this case, the conditions of Corollary 3.1 are satisfied, thence the unique

attractor G of the corresponding RIFS is the graph of a continuous function f that

interpolates the points of ∆.

Example 1 We may choose the Laplace PDE

∂2g

∂x2
1

+
∂2g

∂x2
2

+ · · · +
∂2g

∂x2
n

= 0

that has been extensively studied. It is interesting to see that if the interpolation points
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that lie inside ∆ ∩ [x̂k,jk−1, x̂k,jk ] × � are collinear for all j = (j1, . . . , jn) ∈ �1, k= 1, . . . , n,

and we choose h as in (4.4), then we may easily show that for n= 1, the above construction

gives the well-known affine FIFs and for n= 2 the construction is identical to the one

described in Example 2 of Section 4.1, in the case where h has the same form. Evidently,

for any solvable PDE with boundary conditions as above, we obtain a different fractal

surface. The choices are limitless.

Consider now the operator

DP,∆′ ,∆̂′ ,P ,s : C̃k
∆′ → C([0, 1]n) : DP,∆′ ,∆̂′ ,P ,s(h) = f,

which assigns a FIF f to any function h defined on ∪i∈�1
∂Ii , that has all the partial

derivatives of order k and interpolates the points of ∆. The function f is the attractor of

a RIFS defined as in Corollary 3.1, where H |Ii
= PIi

(h|∂Ii
), B|J(i) = PJJ(i)

(h|∂J(i)), thence

f|Ii
= DP,∆′ ,∆̂′ ,P ,s(h)|Ii

= PIi
(h) + si

(
f|JJi

− PJJ(i)
(h)
)

◦ T −1
i , (4.6)

for all i ∈ �1. We use the notation PIi
(h) = PIi

(h|∂Ii
), PJJ(i)

(h) = P∂JJ(i)
(h|J(i)) to shorten

the proof of the following proposition.

Proposition 4.1 If for any R ∈ �([0, 1]n) the operator PR is linear and injective, then

DP,∆′ ,∆̂′ ,P ,S is also a linear and injective operator.

Proof We may prove the linearity as follows: Consider h1, h2 ∈ Ck
∆′ . Then, for all x ∈ Ii ,

i ∈ �1, we have

f1(x) = DP,∆′ ,∆̂′ ,P ,s(h1)(x) = PIi
(h1)(x) + si

(
f1 − PJJ(i)

(h1)
)

◦ T −1
i (x),

f2(x) = DP,∆′ ,∆̂′ ,P ,s(h2)(x) = PIi
(h2)(x) + si

(
f2 − PJJ(i)

(h2)
)

◦ T −1
i (x).

Therefore, for any λ, µ ∈ �, i ∈ �1, from the uniqueness of the solution of functional

equation (3.9), we have

λf1|Ii
+ µf2|Ii

= λDP,∆′ ,∆̂′ ,P ,s(h1)|Ii
+ µDP,∆′ ,∆̂′ ,P ,s(h2)|Ii

= λPIi
(h1) + λsi

(
f1|JJ(i)

− PJJ(i)
(h1)

)
◦ T −1

i

+ µPIi
(h2) + µsi

(
f2|JJ(i)

− PJJ(i)
(h2)

)
◦ T −1

i

= PIi
(λh1 + µh2) + si

(
(λf1 + µf2)|JJ(i)

− PJJ(i)
(λh1 + µh2)

)
◦ T −1

i

= DP,∆′ ,∆̂′ ,P ,s(λh1 + µh2)|Ii
.

Evidently, from the conditions of Corollary 3.1, if DP,∆′ ,∆̂′ ,P ,s(h) = 0, then h= 0. There-

fore, the operator is injective. �

For example, the Laplace PDE satisfies the conditions of the proposition.
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Figure 6. (a), (b) Two multivariate C1 interpolation functions H and B that satisfy the conditions

of Corollary 3.1 and Corollary 6.1. (c) The attractor of the corresponding RIFS using arbitrary

vertical scaling factors. (d) The attractor of the corresponding RIFS using vertical scaling factors

that satisfy the conditions of Corollary 6.1 is a C1 function.

4.3 Construction III: Using multivariate interpolants

One may use arbitrary multivariate interpolants H and B that satisfy the conditions

of Corollary 3.1 (as in Figure 6). Below, we give a construction that is based only on

one interpolant. Consider B : C([0, 1]n) → C([0, 1]n) to be a linear operator such that

B(g)|∂Jj
= g|∂Jj

, for j ∈ �1. For example, if cj : Jj → Jj are functions (other than the

identity function) such that cj (x) = x, for all x ∈ ∂Jj , j ∈ �1, then we may choose B such

that B(g)|J(j) = g ◦ cj . Let h ∈ C([0, 1]) be any multivariate interpolant of ∆ (e.g. a spline).

If we set H = h and B= B(h), then we may define the operator D∆′ ,∆̂′ ,P ,s, which assigns a

FIF to any function h that interpolates the points of ∆ according to Corollary 3.1. We

may prove the linearity of the operator as in equation (4.2). In [21], a similar construction,

which generalises the Fourier approximations, is presented for n= 1.

5 The box-counting dimension of a class of FIFs

Let B be any non-empty compact subset of �n+1 and let N(B, ε) be the smallest number

of (closed) balls of radius ε that cover B. Let

D = D(B) = lim inf
ε>0

log N(B, ε)

log(1/ε)
and D = D(B) = lim sup

ε>0

log N(B, ε)

log(1/ε)
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be the lower and upper box-counting dimension of B, respectively; if

D = D(B) = lim
ε→0

log N(B, ε)

log(1/ε)

exists, then D is called the box-counting dimension of B [2]. In the latter case, we use the

notation D=D(B) =D(B) =D(B) and say ‘B has box-counting dimension D’. In practice,

we usually use covers of closed cubes of side length (1/kν), where k ∈ �. If Nν(B) denotes

the smallest number of cubes of side 1/kν that cover B and

D = lim
ν→∞

log Nν(B)

log kν

exists, then B has box-counting dimension D. However, to compute D(B), we often

use covers that differ from those above. Assume that one uses covers from the set

{Cε : ε > 0}, which is formed by sets of diameter ε, and let N′(ε) be the minimum

number of sets in Cε that cover B. If we can find constant numbers c1 and c2 such

that c1N(B, ε) � N′(ε) � c2N(B, ε), then N(B, ε) can be replaced by N′(ε) in the

computation of D(B) (the proof is straightforward).

Henceforth, we consider the FIF described in the first case of Section 4. The functions

Qi are of the form

Qi(x) =

n∑
k=1

rk,i(proj−kx)xk +

n∑
k=1

qk,i(proj−kx),

where rk,i , qk,i are defined by (4.2)–(4.3) for all x = (x1, x2, . . . , xn) ∈ JJ(i), i ∈ �1. We

compute the box-counting dimension of the graph G of this FIF in the case

h = u|∪i∈�1
∂Ii
,

where u is a multivariate function of the form (4.4).

Definition 5.1 The maximum range of a continuous function g inside the rectangle I ⊂ �n

is defined by

Rg(I) = max{|g(x) − g(y)| : x, y ∈ I}.

Lemma 5.1 Let K be a rectangle of �n and W a map of the form

W : K × � → K × � : W

(
x

z

)
=

(
T (x)

F(x, z)

)
=

(
T (x)

sz + Q(x)

)
,

where Q is a Lipschitz function and T an affine function. Then for any continuous function

g : K → �, there is L > 0 such that

RF◦(T −1 ,g◦T −1)(T (K)) � |s|Rg(K) + L · d(K), (5.1)

where d(K) is the diameter of K .
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Proof The proof is straightforward. Since Q is a Lipschitz function, we have

|F(x, z) − F(x′, z′)| � |s||z − z′| + |Q(x) − Q(x′)|
� |s||z − z′| + L‖x − x′‖,

for all x, x′ ∈ K . �

Theorem 5.1 If the points of ∆′, ∆̂′ are equidistant

xk,ik+1 − xk,ik = δ,

x̂k,jk+1 − x̂k,jk = ψ,

for all i ∈ �1, j ∈ �1, where δ, ψ ∈ �, α= ψ
δ

∈ �, k= 1, 2, . . . , n, where Nk =N, Mk =M,

the connection matrix C of the RIFS is irreducible and there exists a j ∈ �1 such that at

least one of the points of ∆ ∩ (Jj × �) does not lie on the unique multivariate surface of the

form (4.4), which is defined by the points of ∆∩(∂Jj × �), then the box-counting dimension

of the graph is

D(G) =

{
1 + logα λ, if λ > αn−1

n, otherwise
,

where λ = ρ(S · C).

Proof The proof follows the one presented in [6]. To compute the box-counting dimension,

we use covers of the form

C =

{[
ν1 − 1

αr
,
ν1

αr

]
× · · · ×

[
νn − 1

αr
,
νn

αr

]
×
[
b, b+

1

αr

]
: ν1, . . . , νn, r ∈ �, b ∈ �

}
.

C contains overlapping 1/αr-mesh cubes. We define,

N∗(r) as the minimum number of cubes in C necessary to cover A and

N(r) as the smallest number of
1

αr
-mesh cubes which cover A,

for r > 0. We may easily prove that N(r) � N∗(r) � 2nN(r), thus N(r) may be replaced

by N∗(r) in the computation of the dimension.

From the irreducibility of the connection matrix C and the fact that there exists a

j ∈ �1, such that at least one of the points of ∆ ∩
(
Jj × �

)
does not lie on the unique

multivariate surface of the form (4.4), which is defined by the points of ∆ ∩
(
∂Jj × �

)
,

we deduce that there are points (x̃i , z̃i) ∈ G × (Ii�), for all i ∈ �1, that do not lie on the

multivariate surface of the form (4.4), which is defined by the points of ∆ ∩ (∂Ii × �). Let

Vi denote this vertical distance and Ri the range of f inside Ii . We define the non-negative
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vectors H1, U1 and I by

H1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

VΦ−1(1)

VΦ−1(2)

.

.

.

VΦ−1(Nn)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, U1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

RΦ−1(1)

RΦ−1(2)

.

.

.

RΦ−1(Nn)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

and I = (1, 1, . . . , 1)t .

Therefore,

Ω (H1 · αr) −Nn � N∗(r) � Ω (U1 · αr + I ) ·
([

αr

N

]
+ 1

)n
,

where Ω(U) = u1 +u2 + · · ·+uNn , for U= (u1, u2 . . . , uNn ) ∈ �Nn

and [·] the greatest integer

function. After the second iteration, we obtain αn n-dimensional cubes of side 1
αN

. With

the help of Lemma 5.1, we find that the maximum ranges are contained (as coordinates)

in the vector

U2 = SC ·U1 + α2L
1

N
,

while the heights produced are contained (as coordinates) in the vector

H2 = SC ·H1.

Thus,

Ω (H2 · αr) − αnNn � N∗(r) � Ω (U2 · αr + αnI ) ·
([

αr

αN

]
+ 1

)n
.

After κ iterations, where r − µ − 1 � κ < r − µ, µ= logN
log α

− 1 > 0, we obtain the main

inequality that is used to derive the result. This inequality is a generalisation of inequality

(8) of [6]:

Ω(Hκ · αr) −Nnαn(k−1) � N∗(r) � Ω
(
Uκα

r + �αn(κ−1)
)

·
([

αr

ακ−1N

]
+ 1

)n
,

where

Uκ = SC ·Uκ−1 + L
α(n−1)κ+2−n

N
and

Hκ = SC ·Hκ−1.

With the help of the Perron-Frobenius Theorem, we obtain the result (see [6] for details).

Similar remarks with the ones that follow the proof of the theorem in [6] are also in effect

in �n. �

For the general case, where the interpolation points are not equidistant, we obtain a

result similar to the one presented in [3]. The details of the computation follow closely

those of Theorem 4.2 of [3]. The main idea is to derive functional inequalities for N(G, ε)

that can be used to estimate the behaviour of N(G, ε) as ε decreases to zero. Since the



470 P. Bouboulis and L. Dalla

proofs of all the following theorems are almost identical to the ones presented in [3], we

only present the crucial points.

We first introduce the class of covers that allow us to relate covers of different sizes.

For ε > 0, define the set

τ ε,m = {τ l = (τ1,l1 , τ2,l2 , . . . , τn,ln ) ∈ I; lk = 0, 1, . . . , mk, k = 1, 2, . . . , n},

where l = (l1, l2, . . . , ln) ∈ � = {0, 1, . . . , m1} × · · · × {0, 1, . . . , mn}, m = (m1, . . . , mk). The

set τ ε,m is called an ε-partition if

(1) τk,lk ∈ (− ε
2
, 1),

(2) ε
2
< τk,lk+1 − τk,lk < ε

for all lk = 0, 1, . . . , mk − 1, k = 1, 2, . . . , n. A cover C will be called an ε-column cover of

G with associated ε-partition τ ε,m, if there are {nl; l ∈ �} ⊂ � and {ξl; l ∈ �} ⊂ � such

that

C =
{[
τ1,l1 , τ1,l1 + ε

]
× · · · ×

[
τn,ln , τn,ln + ε

]
× [ξl + (µ− 1)ε, ξl + µε] : µ = 1, . . . , nl; l ∈ �

}
.

We define N∗(ε) = min{|C| : C is an ε-column cover of G}, where |C| is the cardinality

of C, and N(ε) as the minimum number of (n + 1)-dimensional cubes of side length ε.

Then the inequalities

N(ε) � N∗(ε) � 2nN(ε) (5.2)

show that N(ε) can be replaced by N∗(ε) in the calculation of D(G). Let Ni(ε) =

min{|C| : C is an ε-column cover of G ∩ (Ii × �)} for all i ∈ �1.

The following Lemma is a generalisation of Lemma 4.2 of [3].

Lemma 5.2 There exists Pi , P
′
i > 0, i ∈ �1, such that, for 0 < ε < 1,

∣∣∣∣ si

ai

∣∣∣∣ ∑
i′:Ii′ ∈JJ(i)

Ni′

(
ε

ai

)
− Pi

εn
� Ni(ε) �

∣∣∣∣ si

ai

∣∣∣∣ ∑
i′:Ii′ ∈JJ(i)

Ni′

(
ε

ai

)
+
P ′

i

εn
,

where ai = max{ak,i; k = 1, 2, . . . , n}, for all i ∈ �1.

Proof If si = 0, the proof is straightforward. We suppose that si � 0, then Wi is invertible.

Let Ci be a minimal ε-column cover of G ∩ (Ii × �) and let R be a typical column in Ci ,

which consists of ν (n+ 1)-dimensional cubes of side length ε. The map Wi has the form

Wi

(
x

z

)
=

(
T i(x)

Fi(x)

)
=

(
T i(x)

siz + Qi(x)

)
,

where Qi |Ik
, is a multivariate function of the form (4.4), for all k : Ik ⊆ JJ(i). In this case,

one can easily prove that W−1
i is a function of the form

W−1
i

(
x

z

)
=

(
T −1

i (x)
z
si

+ Q′
i(x)

)
,
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where Q′
i |T i (Ik) is also a multivariate function of the form (4.4), for all k : Ik ⊆ JJ(i).

Therefore, using Lemma 5.1, there exists L > 0 such that W−1
i (R) is inside a column of

volume
ε

a1,i
× · · · × ε

an,i
×
(
νε

|si |
+ Lε

)
.

Similarly, there exists L′ > 0, such that W−1
i (R) contains a column of volume

ε

a1,i
× · · · × ε

an,i
×
(
νε

|si |
− L′ε

)
.

This means, for example, that W−1
i (R) can be covered by

νai

|si |
+ Lai + 1

(n + 1)-dimensional cubes of side length ε
ai

, and there are at most 2n ai

εn
+ 2n such

columns. From this point on, the proof is similar with the proof presented in Lemma 4.2

of [3]. �

Theorem 5.2 Let f be a FIF defined as above, with irreducible connection matrix C and

graph G. Let S(d) = diag{ad−1
Φ−1(1)

|sΦ−1(1)|, ad−1
Φ−1(2)

|sΦ−1(2)|, . . . , ad−1
Φ−1(N)

|sΦ−1(N)|} and let D be the

unique value so that ρ(S(D) · C) = 1. If ρ(S(n) · C) > 1 and there exist a j ∈ �1 such that

at least one of the points of ∆∩
(
Jj × �

)
does not lie on the unique multivariate surface of

the form (4.4), which is defined by the points of ∆ ∩
(
∂Jj × �

)
, then D(G) = D, otherwise

D(G) = n.

Proof The assumptions of the theorem ensure that limε→0 εN∗
i (ε) = ∞, for all i ∈ �1. To

prove this, we may use the Perron-Frobenius Theorem as in Lemma 4.3 of [3]. The rest

of the proof is similar with Theorem 4.2 in [3]. We give only the system of solutions of

the functional equalities that are associated with the inequalities of Lemma 5.2:

φi(R, γ, ε) = γε−D +
R

1 − λ
ε−nvi , i ∈ A1. �

6 Cp fractal interpolation functions

In this section, we present methods for the construction of functions of class Cp using

RIFS. These functions are called in excess Cp FIFs (see [17]) since they are generated

through RIFS, in spite of the fact that they are not of fractal nature. Again, the Read-

Bajraktarevic operator, defined in Section 3, plays an important role.

Theorem 6.1 Let h ∈ Cp([0, 1]n), p � 0, be a function that interpolates the points of ∆,

such that all its derivatives of order p satisfy the Lipschitz condition. If the RIFS defined in

Section 3 satisfies the conditions

∂dFi ◦
(
T −1

i , h ◦ T −1
i

)
∂xd1

1 . . . ∂x
dn
n

(
projλx + xλ,iλ−1en,λ

)
=

∂dh

∂xd1

1 . . . ∂x
dn
n

(
projλx + xλ,iλ−1en,λ

)
, (6.1)
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∂dFi ◦
(
T −1

i , h ◦ T −1
i

)
∂xd1

1 . . . ∂x
dn
n

(
projλx + xλ,iλen,λ

)
=

∂dh

∂xd1

1 . . . ∂x
dn
n

(
projλx + xλ,iλen,λ

)
, (6.2)

for all (d1, d2, . . . , dn) ∈ �n such that 0 �
∑n

κ=1 dκ = d � p, dλ � 1, if d > 0, x ∈ ∂Ii ,

i = (i1, i2, . . . , in) ∈ �1, λ = 1, 2, . . . , n, the functions Fi are of class Cp and the vertical

scaling factors satisfy |si | < ai
p, where ai = min{aλ,i; λ = 1, 2, . . . , n}, for all i ∈ �1, then

its attractor G is the graph of a function f of class Cp that interpolates the data points.

Proof Let 〈Cp([0, 1]n), ‖ · ‖Cp〉 be the complete metric space of the continuous functions

defined on [0, 1]n that have continuous derivatives up to order p, where

‖g‖Cp = max

{∣∣∣∣∣ ∂dg

∂xd1

1 . . . ∂x
dn
n

(x)

∣∣∣∣∣ , x ∈ [0, 1]n, dκ ∈ � such that

n∑
κ=1

dκ = d � p

}
.

The set F = {g ∈ Cp([0, 1]n) : g satisfies (6.1)–(6.2)} is a non-empty (h ∈ F) complete

metric subspace. We define the Read-Bajraktarevic operator T : F → F by

Tg(x) = Fi

(
T −1

i (x), g
(
T −1

i (x)
))
,

if x ∈ Ii . In view of (6.1)–(6.2), Tg is well defined in [0, 1]n and maps F on to itself. We

now prove that T is a contraction with respect to the ‖ · ‖Cp norm. Let i ∈ �0, g1, g2 ∈ F.

For x ∈ Ii , we have∣∣∣∣∣∂
d(Tg1 − Tg2)

∂xd1

1 . . . ∂x
dn
n

(x)

∣∣∣∣∣ =

∣∣∣∣∣si

n∏
κ=1

a−dκ
iκ

∣∣∣∣∣ ·
∣∣∣∣∣ ∂d(g1 − g2)

∂xd1

1 . . . ∂x
dn
n

(
T −1

i (x)
)∣∣∣∣∣

�

∣∣∣∣ si

ai
d

∣∣∣∣ ·
∣∣∣∣∣ ∂d(g1 − g2)

∂xd1

1 . . . ∂x
dn
n

(
T −1

i (x)
)∣∣∣∣∣ .

Thus,

‖Tg1|Ii
− Tg2|Ii

‖Cp �

∣∣∣∣∣ si

adi

∣∣∣∣∣ · ‖g1|JJ(Ii )
− g2|JJ(Ii )

‖Cp �

∣∣∣∣ sad
∣∣∣∣ · ‖g1 − g2‖,

for all i ∈ �1, where s = max{|si |, i ∈ �1}, a = min{ai , i ∈ �1}, and therefore T is a

contraction. Hence, T possesses a unique fixed point f ∈ F. �

Remark 6.1 The relation |si | < ai
p, for all i ∈ �1, ensures that the Read-Bajraktarevic

operator is a contraction with respect to the ‖ · ‖Cp norm. In [5], Barnsley and Harrington

obtain the same relation (for n = 1) through integration.

Remark 6.2 Considering that Fi(x, z) = siz + Qi(x), the relations (6.1)–(6.2) become

∂dQi

∂xd1

1 . . . ∂x
dn
n

(
projλx + x̂λ,jλ−1en,λ

)
=

n∏
κ=1

adκiκ
∂dh

∂xd1

1 . . . ∂x
dn
n

(
projλT (x) + xλ,iλ−1en,λ

)

− si
∂dh

∂xd1

1 . . . ∂x
dn
n

(
projλx + x̂λ,iλ−1en,λ

)
, (6.3)
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∂dQi

∂xd1

1 . . . ∂x
dn
n

(
projλx + x̂λ,jλen,λ

)
=

n∏
κ=1

adκiκ
∂dh

∂xd1

1 . . . ∂x
dn
n

(
projλT (x) + xλ,iλen,λ

)

− si
∂dh

∂xd1

1 . . . ∂x
dn
n

(
projλx + x̂λ,iλen,λ

)
, (6.4)

for all (d1, d2, . . . , dn) ∈ �n, such that 0 �
∑n

κ=1 dκ = d � p, dλ � 1, if d > 0, x ∈ ∂JJ(i),

i = (i1, i2, . . . , in) ∈ �1, λ = 1, 2, . . . , n.

Corollary 6.1 Let h ∈ Cp([0, 1]n), p � 0, be a function that interpolates the points of ∆

such that all its derivatives of order p satisfy the Lipschitz condition. Consider the case that

Qi(x) = H(T i(x)) − si · B(x), for all x ∈ JJ(i), i ∈ �1,

where H,B ∈ Cp([0, 1]n), such that

∂dH

∂xd1

1 . . . ∂x
dn
n

(x) =
∂dh

∂xd1

1 . . . ∂x
dn
n

(x) , for x ∈ ∂Ii ,

∂dB

∂xd1

1 . . . ∂x
dn
n

(x) =
∂dh

∂xd1

1 . . . ∂x
dn
n

(x) , for x ∈ ∂JJ(i),

for all (d1, d2, . . . , dn) ∈ �n, such that 0 �
∑n

κ=1 dκ = d � p, dλ � 1, if d > 0. The unique

attractor G of the corresponding RIFS {[0, 1]n × �,Wi , P ; i ∈ �1} is the graph of a function

f of class Cp that interpolates the points of ∆.

6.1 An example of C1 FIFs

Below we give a simple example of a RIFS satisfying the relations of 6.1. We note that in

the case where n = 1, the construction is identical to the cubic Hermite FIFs (see [19]).

Let h ∈ C2([0, 1]n); we consider the special case where Qi are of the following form:

Qi(x) =

n∑
k=1

3∑
l=0

rk,i,l(proj−kx)xlk, (6.5)

for all x = (x1, x2, . . . , xn) ∈ JJ(i), where rk,i,l : proj−k
(
JJ(i)

)
→ Ii are functions of class C1

such that

rk,i,l(proj−k,λx + x̂λ,jλen−1,λ) = rk,i,l
(
proj−k,λx + x̂λ,jλ−1en−1,λ

)
= 0,

∂rk,i,l
∂xλ

(proj−k,λx + x̂λ,jλen−1,λ) =
∂rk,i,l
∂xλ

(
proj−k,λx + x̂λ,jλ−1en−1,λ

)
= 0,

for all x ∈ ∂JJ(i), i = (i1, i2, . . . , in) ∈ �1, l = 0, 1, 2, 3, λ = 1, 2, . . . , n−1, k = λ+1, λ+2, . . . , n.

We may easily show that in this case the functional system (6.3)–(6.4) has a unique solution.

In particular, for λ = 1, equations (6.3)–(6.4) become

3∑
l=0

r1,i,l
(
proj−1x + x̂1,j1−1en,1

)
x̂l1,j1−1 = h

(
proj1T (x) + x1,i1−1en,1

)
− sih

(
proj1x + x̂1,i1−1en,1

)
,
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3∑
l=0

r1,i,l
(
proj−1x + x̂1,j1en,1

)
x̂l1,j1−1 = h

(
proj1T (x) + x1,i1en,1

)
− sih

(
proj1x + x̂1,i1en,1

)
,

3∑
l=1

r1,i,l
(
proj−1x + x̂1,j1en,1

)
lx̂l−1

1,j1
= ai1

∂h

∂x1

(
proj1T (x) + x1,i1−1en,1

)

− si
∂h

∂x1

(
proj1x + x̂1,i1−1en,1

)
,

3∑
l=1

r1,i,l
(
proj−1x + x̂1,j1−1en,1

)
lx̂l−1

1,j1
= ai1

∂h

∂x1

(
proj1T (x) + x1,i1en,1

)

− si
∂h

∂x1

(
proj1x + x̂1,i1en,1

)
.

The above system is linear and can always be solved to compute the values r1,i,l(proj−1x),

for l= 0, 1, 2, 3, x ∈ JJ(i), in terms of the values of the function h and its partial derivatives

on Ii and JJ(i). In general, for any λ > 1, equations (6.3)–(6.4) give a linear system that

can always be solved for rλ,i,l(proj−λx), x ∈ JJ(i), l = 0, 1, 2, 3, in terms of the values of

the function h and its partial derivatives on Ii and JJ(i) and the values rk,i,l(proj−λx),

l = 0, 1, 2, 3, k = 1, 2, . . . , λ − 1, which have been computed in the previous steps. For

example, for n = 2, we obtain the following linear systems:⎡
⎢⎢⎢⎢⎣

1 x̂j1−1 x̂2
j1−1 x̂3

j1−1

1 x̂j1 x̂2
j1

x̂3
j1

0 1 2x̂j1−1 3x̂2
j1−1

0 1 2x̂j1 3x̂2
j1

⎤
⎥⎥⎥⎥⎦ ·

⎡
⎢⎢⎢⎢⎣
r1,i,0(y)

r1,i,1(y)

r1,i,2(y)

r1,i,3(y)

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

h(xi1−1, Ti,2(y)) − sih(x̂j1−1, y)

h(xi1 , Ti,2(y)) − sih(x̂j1 , y)

ai,1hx(xi1−1, T2(y)) − sihx(x̂j1−1, y)

ai,1hx(xi1 , T2(y)) − sihx(x̂j1 , y)

⎤
⎥⎥⎥⎥⎦ (6.6)

⎡
⎢⎢⎢⎢⎣

1 ŷj2−1 ŷ2
j2−1 ŷ3

j2−1

1 ŷj2 ŷ2
j2

ŷ3
j2

0 1 2ŷj2−1 3ŷ2
j2−1

0 1 2ŷj2 3ŷ2
j2

⎤
⎥⎥⎥⎥⎦ ·

⎡
⎢⎢⎢⎢⎣
r2,i,0(x)

r2,i,1(x)

r2,i,2(x)

r2,i,3(x)

⎤
⎥⎥⎥⎥⎦ = B (6.7)

where

B =

⎡
⎢⎢⎢⎣

h(Ti,1, yi2−1) − sih(x, ŷj2−1) − r1,i,0(ŷj2−1) − r1,i,1(ŷj2−1)x− r1,i,2(ŷj2−1)x
2 − r1,i,3(ŷj2−1)x

3

h(Ti,1, yi2 ) − sih(x, ŷj2 ) − r1,i,0(ŷj2 ) − r1,i,1(ŷj2 )x− r1,i,2(ŷj2 )x
2 − r1,i,3(ŷj2 )x

3

ai,2hy(Ti,1, yi2−1) − sihy(x, ŷj2−1) − r′
1,i,0(ŷj2−1) − r′

1,i,1(ŷj2−1)x− r′
1,i,2(ŷj2−1)x

2 − r′
1,i,3(ŷj2−1)x

3

ai,2hy(Ti,1, yi2 ) − sihy(x, ŷj2 ) − r′
1,i,0(ŷj2 ) − r′

1,i,1(ŷj2 )x− r′
1,i,2(ŷj2 )x

2 − r′
1,i,3(ŷj2 )x

3

⎤
⎥⎥⎥⎦.

In Figure 7, we give one C1 surface using the above construction.

7 Conclusions

In the present work, some new methods are introduced for the construction of FIFs on

arbitrary interpolation points placed on rectangular grids of �n. We show that these

methods generalise the construction given by Barnsley for n = 1. In spite of all previous
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Figure 7. A C1 FIS according to the construction presented in Section 6.1. The black lines are the

values of the C2 interpolation function h.

attempts to generalise Barsnley’s construction, which used only the interpolation points

to construct the fractal function, our method uses values defined on the boundary of

the grid. Therefore, a multivariate interpolant is needed. We presented several interesting

examples and believe that many more may be found.

Applications of FIFs to the real line � may be found in various areas such as

one-dimensional signal modelling and computer graphics. However, the lack of a solid

mathematical background has prevented scientists and engineers from using FIFs to

address many �n-related problems in the case where n > 1, such as the modelling of two-

dimensional signals (e.g. images) and generation of rough surfaces for use in computer

graphics. We hope that this work may prove helpful for these cases. Finally, we should

note that some interesting questions are raised. Recent works have related FIFs with

splines and Hermite interpolation polynomials of �. Is there an analogous relation in

�n? How may FIFs be used to generalise splines in any dimension? May we construct

orthogonal wavelets using fractal functions (as in [10]) in �n?
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