Edge Preserving Image Denoising in Reproducing Kernel Hilbert Spaces

A novel approach for removing any type of additive noise from a grayscale image

P. Bouboulis1 K. Slavakis2, S. Theodoridis1

1Department of Informatics and Telecommunications
University of Athens Greece,
2Department of Telecommunications, Science and Technology University of Peloponnese, Greece

25-08-2010
Outline

1. Image Denoising
 - The problem
 - Typical Solutions

2. Reproducing Kernel Hilbert Spaces
 - Definition and Main Properties of RKHS
 - Why RKHS?
 - Two Important Theorems

3. Kernelised Noise Removal
 - Basic Idea
 - Formulation
 - Parameter Selection
 - Experiments
Outline

1. Image Denoising
 - The problem
 - Typical Solutions

2. Reproducing Kernel Hilbert Spaces
 - Definition and Main Properties of RKHS
 - Why RKHS?
 - Two Important Theorems

3. Kernelised Noise Removal
 - Basic Idea
 - Formulation
 - Parameter Selection
 - Experiments
Additive Noise

- f: is the original image.
Additive Noise

- f: is the original image.
- e: is the additive noise.
Additive Noise

- \(f \): is the original image.
- \(e \): is the additive noise.
- \(\hat{f} = f + e \): is the noisy image.
Additive Noise

- f: is the original image.
- e: is the additive noise.
- $\hat{f} = f + e$: is the noisy image.

The objective of the image denoising problem is to estimate the original image f from the noisy one \hat{f}.
Additive Noise
Additive Noise
Types of Noise

Types of Noise that we typically encounter:
Types of Noise that we typically encounter:

1. Gaussian noise: \(p(z) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(z-\mu)^2}{2\sigma^2}} \)
Types of Noise that we typically encounter:

1. Gaussian noise: \(p(z) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(z-\mu)^2}{2\sigma^2}} \)

2. Impulse Noise: \(p(z) = P_a, \text{ if } z = a, \quad p(z) = P_b, \text{ if } z = b, \quad p(z) = 0 \text{ otherwise.} \)
Outline

1. **Image Denoising**
 - The problem
 - Typical Solutions

2. **Reproducing Kernel Hilbert Spaces**
 - Definition and Main Properties of RKHS
 - Why RKHS?
 - Two Important Theorems

3. **Kernelised Noise Removal**
 - Basic Idea
 - Formulation
 - Parameter Selection
 - Experiments
Typical Solutions
Typical Solutions

- Median Filter
Typical Solutions

- Median Filter
- Fourier Analysis
Typical Solutions

- Median Filter
- Fourier Analysis
- Wavelets
Typical Solutions

- Median Filter
- Fourier Analysis
- Wavelets
- Partial Differential Equations
Most known methods are \textit{noise specific}, i.e., they need some information about the type and/or the statistics of the noise (e.g., the parameter σ in the case of gaussian noise).
Problems and Motivation

Most known methods are noise specific, i.e., they need some information about the type and/or the statistics of the noise (e.g., the parameter σ in the case of gaussian noise).

We aim at a noise independent methodology.
Problems and Motivation

Most known methods are **noise specific**, i.e., they need some information about the type and/or the statistics of the noise (e.g., the parameter σ in the case of gaussian noise).

We aim at a **noise independent** methodology.

The idea is to express f as a **span** of some **base functions** f_i.
Problems and Motivation

- Most known methods are **noise specific**, i.e., they need some information about the type and/or the statistics of the noise (e.g., the parameter σ in the case of gaussian noise).
- We aim at a **noise independent** methodology.
- The idea is to express f as a **span** of some **base functions** f_i.
- We choose the base functions f_i to belong to a **RKHS**.
Outline

1. Image Denoising
 - The problem
 - Typical Solutions

2. Reproducing Kernel Hilbert Spaces
 - Definition and Main Properties of RKHS
 - Why RKHS?
 - Two Important Theorems

3. Kernelised Noise Removal
 - Basic Idea
 - Formulation
 - Parameter Selection
 - Experiments
Consider a linear class \mathcal{H} of real valued functions f defined on a set \mathcal{X} (in particular \mathcal{H} is a Hilbert space) for which there exists a function $\kappa : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ with the following two properties:
Consider a linear class \mathcal{H} of real valued functions f defined on a set \mathcal{X} (in particular \mathcal{H} is a Hilbert space) for which there exists a function $\kappa : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ with the following two properties:

1. For every $x \in \mathcal{X}$, $\kappa(x, \cdot)$ belongs to \mathcal{H}.

Reproducing Kernel Hilbert Spaces.
Consider a linear class \mathcal{H} of real valued functions f defined on a set \mathcal{X} (in particular \mathcal{H} is a Hilbert space) for which there exists a function $\kappa : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ with the following two properties:

1. For every $x \in \mathcal{X}$, $\kappa(x, \cdot)$ belongs to \mathcal{H}.

2. κ has the so called reproducing property, i.e.,

$$ f(x) = \langle f, \kappa(x, \cdot) \rangle_{\mathcal{H}}, \text{ for all } f \in \mathcal{H}, \ x \in \mathcal{X}, \quad (1) $$

in particular $\kappa(x, y) = \langle \kappa(x, \cdot), \kappa(y, \cdot) \rangle_{\mathcal{H}}$.
Outline

1. Image Denoising
 - The problem
 - Typical Solutions

2. Reproducing Kernel Hilbert Spaces
 - Definition and Main Properties of RKHS
 - Why RKHS?
 - Two Important Theorems

3. Kernelised Noise Removal
 - Basic Idea
 - Formulation
 - Parameter Selection
 - Experiments
Non linear Processing in RKHS

- Why are RKHS so useful?
Non-linear Processing in RKHS

Why are RKHS so useful?

The original nonlinear task is transformed into a linear one, which can be solved by employing an easier algebra.
Non linear Processing in RKHS

- Why are RKHS so useful?
 - The original nonlinear task is transformed into a linear one, which can be solved by employing an easier algebra.
 - The main concepts of this procedure can be summarized in the following two steps:
Why are RKHS so useful?

The original nonlinear task is transformed into a linear one, which can be solved by employing an easier algebra.

The main concepts of this procedure can be summarized in the following two steps:

- Map the finite dimensionality input data from the input space \mathcal{X} into a higher dimensionality (possibly infinite) RKHS \mathcal{H}.
Non linear Processing in RKHS

Why are RKHS so useful?

- The original **nonlinear** task is transformed into a **linear** one, which can be solved by employing an easier algebra.
- The main concepts of this procedure can be summarized in the following two steps:
 1. Map the **finite dimensionality** input data from the input space \mathcal{X} into a **higher dimensionality** (possibly infinite) RKHS \mathcal{H}.
 2. Perform a **linear processing** on the mapped data in \mathcal{H}.
The Kernel Trick

- An alternative way of describing this process is through the popular kernel trick.
The Kernel Trick

* An alternative way of describing this process is through the popular **kernel trick**.

* "Given an algorithm which is formulated in terms of an inner product, one can construct an alternative algorithm by replacing the inner product with a positive kernel κ".
Some Kernels used in practice

- **Polynomial Kernel** \(\kappa(x, y) = \langle x, y \rangle^d \)
Some Kernels used in practice

- **Polynomial Kernel** \(\kappa(x, y) = \langle x, y \rangle^d \)
- **Gaussian Kernel** \(\kappa(x, y) = \exp\left(-\frac{\|x-y\|^2}{2\sigma^2}\right), \sigma > 0 \)
Some Kernels used in practice

- **Polynomial Kernel** \(\kappa(x, y) = \langle x, y \rangle^d \)
- **Gaussian Kernel** \(\kappa(x, y) = \exp \left(-\frac{\|x-y\|^2}{2\sigma^2} \right), \sigma > 0 \)
- **Inhomogeneous Polynomial Kernel** \(\kappa(x, y) = (\langle x, y \rangle + c)^d \)
Some Kernels used in practice

- **Polynomial Kernel** \(\kappa(x, y) = \langle x, y \rangle^d \)
- **Gaussian Kernel** \(\kappa(x, y) = \exp\left(-\frac{||x-y||^2}{2\sigma^2}\right), \sigma > 0 \)
- **Inhomogeneous Polynomial Kernel**
 \(\kappa(x, y) = (\langle x, y \rangle + c)^d \)
- **B\(_n\)-Spline of odd order Kernel** \(\kappa(x, y) = B_{2r+1}(||x - y||), \text{ with } B_n = \bigotimes_{i=1}^n I_{[-\frac{1}{2}, \frac{1}{2}]} \)
Outline

1. Image Denoising
 - The problem
 - Typical Solutions

2. Reproducing Kernel Hilbert Spaces
 - Definition and Main Properties of RKHS
 - Why RKHS?
 - Two Important Theorems

3. Kernelised Noise Removal
 - Basic Idea
 - Formulation
 - Parameter Selection
 - Experiments
The Representer Theorem

Theorem

Denote by $\Omega : [0, \infty) \to \mathbb{R}$ a strictly monotonic increasing function, by \mathcal{X} a set and by $c : (\mathcal{X} \times \mathbb{R}^2)^m \to \mathbb{R} \cup \{\infty\}$ an arbitrary loss function. Then each minimizer $f \in \mathcal{H}$ of the regularized risk functional

$$c ((x_1, y_1, f(x_1)), \ldots, (x_N, y_N, f(x_N)) + \Omega (\|f\|_{\mathcal{H}})$$

admits a representation of the form

$$f(x) = \sum_{n=1}^{N} \alpha_n \kappa(x_n, x).$$
Consider the problems

\[
\minimize_{f \in \mathcal{H}} \sum_{n=1}^{N} |f(x_i) - y_i|^2 + \lambda \|f\|_{\mathcal{H}}^2
\]
Consider the problems

\[
\begin{align*}
\text{minimize} & \quad \sum_{n=1}^{N} |f(x_i) - y_i|^2 + \lambda \|f\|_H^2 \\
\text{minimize} & \quad \sum_{n=1}^{N} |f(x_i) - y_i| + \lambda \|f\|_H^2
\end{align*}
\]
Consider the problems

\[
\min_{f \in \mathcal{H}} \sum_{n=1}^{N} |f(x_i) - y_i|^2 + \lambda \|f\|_{\mathcal{H}}^2
\]

\[
\min_{f \in \mathcal{H}} \sum_{n=1}^{N} |f(x_i) - y_i| + \lambda \|f\|_{\mathcal{H}}^2
\]

In both cases the minimizer admits the form:

\[
f(x) = \sum_{n=1}^{N} \alpha_n \kappa(x_n, x).
\]
The semi-parametric Representer Theorem

Theorem

Suppose that in addition to the assumptions of the previous theorem we are given a set of M real-valued functions
\[\{\psi_p\}_{p=1}^M : \mathcal{X} \to \mathbb{R}, \]
with the property that the $N \times M$ matrix
\[(\psi_p(x_n))_{n,p} \]
has rank M. Then any \(f := \tilde{f} + h \), with \(\tilde{f} \in \mathcal{H} \) and \(h \in \text{span}\{\psi_p\} \), minimizing the regularized risk functional
\[
c \left((x_1, y_1, f(x_1)), \ldots, (x_N, y_N, f(x_N)) \right) + \Omega \left(\|\tilde{f}\|_{\mathcal{H}} \right)
\]
admits a representation of the form

\[
f(x) = \sum_{n=1}^{N} \alpha_n \kappa(x_n, x) + \sum_{p=1}^{M} \beta_p \psi_p(x).
\]
Typically a RKHS consists of functions that are very smooth.
Typically a RKHS consists of functions that are very smooth.

Evidently, one cannot effectively approximate a non-smooth function f as a span of base functions of a specific RKHS.
Typically a RKHS consists of functions that are very smooth.

Evidently, one cannot effectively approximate a non-smooth function f as a span of base functions of a specific RKHS.

The semi-parametric Representer Theorem, may be used to impose non-smoothness through the functions ψ_p.
Image Denoising
- The problem
- Typical Solutions

Reproducing Kernel Hilbert Spaces
- Definition and Main Properties of RKHS
- Why RKHS?
- Two Important Theorems

Kernelised Noise Removal
- Basic Idea
- Formulation
- Parameter Selection
- Experiments
An image is actually a function
An image is actually a function
Outline

1. Image Denoising
 - The problem
 - Typical Solutions

2. Reproducing Kernel Hilbert Spaces
 - Definition and Main Properties of RKHS
 - Why RKHS?
 - Two Important Theorems

3. Kernelised Noise Removal
 - Basic Idea
 - Formulation
 - Parameter Selection
 - Experiments
Rectangular area neighborhood

- We are given a noisy image with dimensions $N_0 \times M_0$
Rectangular area neighborhood

- We are given a noisy image with dimensions $N_0 \times M_0$
- We move from one pixel to the next taking (for each pixel) a corresponding neighborhood (i.e. a rectangular area).
We are given a noisy image with dimensions $N_0 \times M_0$.

We move from one pixel to the next taking (for each pixel) a corresponding **neighborhood** (i.e. a rectangular area).
Choosing functions to represent edges

Let \hat{f} be the given "noisy" neighborhood of one pixel with dimensions $N \times M$, i.e. the $\hat{z}_{m,n} = \hat{f}(x_m, y_n)$ for $m = 1, \ldots, M$, $n = 1, \ldots, N$, are the given pixel values of the noisy neighborhood.
Choosing functions to represent edges

- Let \(\hat{f} \) be the given "noisy" neighborhood of one pixel with dimensions \(N \times M \), i.e. the \(\hat{z}_{m,n} = \hat{f}(x_m, y_n) \) for \(m = 1, \ldots, M, \ n = 1, \ldots, N \), are the given pixel values of the noisy neighborhood.

- We assume a set of real valued functions \(\psi_k, k = 1, \ldots, K \) defined on \(\mathbb{R}^2 \) that satisfy the condition of the semiparametric Representer Theorem.
Choosing functions to represent edges

- Let \hat{f} be the given "noisy" neighborhood of one pixel with dimensions $N \times M$, i.e. the $\hat{z}_{m,n} = \hat{f}(x_m, y_n)$ for $m = 1, \ldots, M$, $n = 1, \ldots, N$, are the given pixel values of the noisy neighborhood.

- We assume a set of real valued functions ψ_k, $k = 1, \ldots, K$ defined on \mathbb{R}^2 that satisfy the condition of the semiparametric Representer Theorem.
The expansion

Next, we assume for the denoised image f that

$$f \in \mathcal{F} = \mathcal{H} + h_0 I + \text{span}\{\psi_1, \ldots, \psi_K\}$$

(where $I \in \mathbb{R}$ stands for the constant function i.e. $I(x, y) = 1$).
Next, we assume for the denoised image f that
\[f \in \mathcal{F} = \mathcal{H} + h_0 I + \text{span}\{\psi_1, \ldots, \psi_K\} \]
(where $I \in \mathbb{R}$ stands for the constant function i.e. $I(x, y) = 1$).

Hence f admits the form
\[f = \tilde{f} + h_0 I + \sum_{k=1}^{K} \beta_k \psi_k. \]
We solve the following minimization problem for each pixel (using Polyak’s Projected Subgradient Method):

\[
\min_{f \in \mathcal{F}} \sum_{m=1}^{M} \sum_{n=1}^{N} |f(x_m, y_n) - \hat{z}_{m,n}| + \frac{\lambda}{2} \|\tilde{f}\|_{\mathcal{H}}^2 + \frac{\mu}{2} \sum_{k=1}^{K} |\beta_k|^2,
\]

where \(\tilde{f}\) is the part of the expansion of \(f\) that lives on \(\mathcal{H}\).
Applying a version of the semiparametric Representer Theorem we take that f admits the form

$$f = \sum_{m=1}^{M} \sum_{n=1}^{N} \alpha_{m,n} \kappa((x_m, y_n), (\cdot, \cdot)) + h_0 I + \sum_{k=1}^{K} \beta_k \psi_k.$$
Remarks

\[
\min_{f \in \mathcal{F}} \sum_{m=1}^{M} \sum_{n=1}^{N} |f(x_m, y_n) - \hat{z}_{m,n}| + \frac{\lambda}{2} \| \tilde{f} \|_\mathcal{H}^2 + \frac{\mu}{2} \sum_{k=1}^{K} |\beta_k|^2,
\]
Remarks

\[
\min_{f \in \mathcal{F}} \sum_{m=1}^{M} \sum_{n=1}^{N} |f(x_m, y_n) - \hat{z}_{m,n}| + \frac{\lambda}{2} \|\tilde{f}\|_{\mathcal{H}}^2 + \frac{\mu}{2} \sum_{k=1}^{K} |\beta_k|^2,
\]

- Note that the use of l_2 instead of the l_1 norm in the cost function would make the method sensitive to outliers (e.g., impulses).
minimize $\sum_{m=1}^{M} \sum_{n=1}^{N} |f(x_m, y_n) - \hat{z}_{m,n}| + \frac{\lambda}{2} \|\tilde{f}\|^2_H + \frac{\mu}{2} \sum_{k=1}^{K} |\beta_k|^2,$

Note that the use of l_2 instead of the l_1 norm in the cost function would make the method sensitive to outliers (e.g., impulses).

Furthermore, the l_1 norm adds some sort of sparsity to the expansion.
Remarks

\[
\minimize_{f \in \mathcal{F}} \sum_{m=1}^{M} \sum_{n=1}^{N} |f(x_m, y_n) - \hat{z}_{m,n}| + \frac{\lambda}{2} \| \tilde{f} \|_{\mathcal{H}}^2 + \frac{\mu}{2} \sum_{k=1}^{K} |\beta_k|^2,
\]

- Note that the use of \(l_2 \) instead of the \(l_1 \) norm in the cost function would make the method sensitive to outliers (e.g., impulses).
- Furthermore, the \(l_1 \) norm adds some sort of sparsity to the expansion.
- For even more sparse solutions, one may also adopt the \(l_1 \) norm for the regularization terms.
In the case of the Gaussian Kernel:

\[\| \tilde{f} \|_H = \int_X \sum_n \frac{\sigma^{2n}}{n!2^n} (O^n \tilde{f}(x))^2 \, dx, \]

with \(O^{2n} = \Delta^n \) and \(O^{2n+1} = \nabla \Delta^n \), \(\Delta \) being the Laplacian and \(\nabla \) the gradient operator.

Thus, we see that the regularization term \(\| \tilde{f} \|_H^2 \) "penalizes" the derivatives of the minimizer’s part that lives on \(H \).
Outline

1. Image Denoising
 - The problem
 - Typical Solutions

2. Reproducing Kernel Hilbert Spaces
 - Definition and Main Properties of RKHS
 - Why RKHS?
 - Two Important Theorems

3. Kernelised Noise Removal
 - Basic Idea
 - Formulation
 - Parameter Selection
 - Experiments
Selection of the parameters λ, μ

- We keep λ constant.
Selection of the parameters λ, μ

- We keep λ constant.
- The value of μ is adjusted so that:
Selection of the parameters λ, μ

- We keep λ constant.
- The value of μ is adjusted so that:
 - if we are dealing with a pixel-neighborhood that corresponds to a smooth area, μ is large,
Selection of the parameters λ, μ

- We keep λ constant.
- The value of μ is adjusted so that:
 - if we are dealing with a pixel-neighborhood that corresponds to a smooth area, μ is large,
 - if we are dealing with a pixel-neighborhood that corresponds to an edge, μ is small,
Selection of the parameters λ, μ

- We keep λ constant.
- The value of μ is adjusted so that:
 - if we are dealing with a pixel-neighborhood that corresponds to a smooth area, μ is large,
 - if we are dealing with a pixel-neighborhood that corresponds to an edge, μ is small,
 - For "steeper" edges, the value of μ is smaller.
Outline

1. Image Denoising
 - The problem
 - Typical Solutions

2. Reproducing Kernel Hilbert Spaces
 - Definition and Main Properties of RKHS
 - Why RKHS?
 - Two Important Theorems

3. Kernelised Noise Removal
 - Basic Idea
 - Formulation
 - Parameter Selection
 - Experiments
Gaussian Noise Removal

Figure: (a) Original Image, (b) Original with additive Gaussian Noise - PSNR=18.7146 dB, (c) Wavelet Denoising (BiShrink) - PSNR=29.3536 dB, (d) Kernelised Denoising - PSNR=29.4535 dB
Impulse Noise Removal

Figure: (a) Original Image, (b) Original with additive Impulse Noise - PSNR=12.7562 dB, (c) Wavelet Denoising - PSNR=25.2574 dB, (d) Kernelised Denoising - PSNR=30.1146 dB
Mixed Noise Removal

Figure: (a) Image with additive mixed Noise (Gaussian + Impulse) - PSNR=21 dB, (b) Kernelised Denoising - PSNR=32.28 dB
Advantages

Extended experiments were conducted using a plethora of cutting edge methods (SKR, BM3D, BiShrink, BLS-GSM, e.t.c.).
Advantages

Extended experiments were conducted using a plethora of cutting edge methods (SKR, BM3D, BiShrink, BLS-GSM, e.t.c.).

Advantages of the kernel based methodology:
Advantages

Extended experiments were conducted using a plethora of cutting edge methods (SKR, BM3D, BiShrink, BLS-GSM, e.t.c.).

Advantages of the kernel based methodology:

- Independence of the noise statistics.
Advantages

Extended experiments were conducted using a plethora of cutting edge methods (SKR, BM3D, BiShrink, BLS-GSM, e.t.c.).

Advantages of the kernel based methodology:
- Independence of the noise statistics.
- Superior results in the presence of impulse or mixed noise.
Advantages

Extended experiments were conducted using a plethora of cutting edge methods (SKR, BM3D, BiShrink, BLS-GSM, e.t.c.).

Advantages of the kernel based methodology:

- Independence of the noise statistics.
- Superior results in the presence of impulse or mixed noise.
- In the presence of gaussian noise, the kernel based method gives results similar to wavelet-based techniques that require no additional information for the noise statistics (such as BiShrink).
Disadvantages:

Disadvantages:
Disadvantages:

- Increased computational complexity.
Disadvantages:

- Increased computational complexity.
- In the presence of gaussian noise, the cutting edge wavelet-based methods (such as BM3D, BLS-GSM), which require some sort of knowledge of the standard deviation σ, give superior results.
Future Research

- Kernel Based processing in the Wavelet Domain.
Future Research

- Kernel Based processing in the Wavelet Domain.
- Applying the kernel-based approach in the context of super-resolution.