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Abstract—We consider the task of robust non-linear regression
in the presence of both bounded noise and outliers. Assuming
that the unknown non-linear function belongs to a Reproducing
Kernel Hilbert Space (RKHS), our goal is to estimate the set
of the associated unknown parameters. Due to the presence of
outliers, common techniques such as the Kernel Ridge Regression
(KRR) or the Support Vector Regression (SVR) turn out to be
inadequate. Instead, we employ sparse modeling arguments to
explicitly model and estimate the outliers, adopting a greedy
approach. The proposed robust scheme, i.e., Kernel Greedy
Algorithm for Robust Denoising (KGARD), is inspired by the
classical Orthogonal Matching Pursuit (OMP) algorithm. Specif-
ically, the proposed method alternates between a KRR task and
an OMP-like selection step. Convergence properties as well as
theoretical results concerning the identification of the outliers
are provided. Moreover, KGARD is compared against other
cutting edge methods in terms of its performance and the derived
theoretical results are verified via a set of experiments. Finally,
the proposed robust estimation framework is applied to the task
of image denoising, and its enhanced performance in the presence
of outliers is demonstrated.

Index Terms—Robust non-linear regression employing kernels,
modeling in RKH spaces, sparse modeling via greedy algorithms,
kernel greedy algorithm for robust denoising, KGARD, robust
kernel ridge regression, RKRR.

I. INTRODUCTION

THE problem of function estimation has attracted sig-

nificant attention in the machine learning and signal

processing communities over the past decades. In this paper,

we target the specific task of regression, which is typically

described as follows: given a training set of the form D =
{(yi,xi)}Ni=1, we aim to estimate the input-output relation

between xi and yi; i.e., a function f , such that f(xi) is “close”

to yi, for all i. This is usually achieved by employing a loss

function, i.e., a function C(xi, yi, f(xi)), that measures the

deviation between the observed values, yi, and the predicted

values, f(xi), and minimizing the so called Empirical Risk,

i.e.,
∑N

i=1 C(xi, yi, f(xi)). For example, in the least squares

regression, one adopts the squared error, i.e., (yi − f(xi))
2
,

and minimizes a quadratic function.

Naturally, the choice for f strongly depends on the under-

lying true model. In this paper, we assume that f belongs to

an RKHS. These are inner product function spaces, in which

every function is reproduced by an associated (space defining)

kernel; that is, for every x ∈ X , there exists κ(·,x) ∈ H,
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such that f(x) = 〈f, κ(·,x)〉H. This is the case that has

been addressed (amongst others) by two very popular and

well-established methods which are commonly referred to as

the Kernel Ridge Regression (KRR) and the Support Vector

Regression (SVR).

Another important issue that determines the quality of the

estimation is the underlying noise model. For the most com-

mon noise sources (Gaussian, Laplacian, etc.) the estimation

is performed via the KRR by solving a (regularized) Least

Squares task, [1]. However, when outliers are present or

when the noise distribution exhibits long tails (commonly

originating from another noisy source) the performance of the

KRR degrades significantly. The non-robustness of the Least

Squares estimator is well known even for the case of the simple

linear regression task; a variety of methods that deal with this

problem have been established over the years, e.g., [1]–[13].

On the other hand, the development of robust estimators for

the KRR has been addressed only recently; the task is known

as the Robust Kernel Ridge Regression (RKRR), [14], [15].

In this case, yi is assumed to be generated by

yi = f
¯
(xi) + vi, i = 1, ..., N, (1)

where vi are random noise samples which may contain out-

liers. The present paper focuses on this task in the special

case where the unknown function, f
¯
, is assumed to lie in an

RKHS, H. It should be noted that both SVR and KRR can be

employed to address this problem, but the presence of outliers

degrades their performance significantly due to over-fitting,

[16], [17]. Of course, in SVR this effect is not as dominant as

in typical KRR, due to the ℓ1 loss function that it is employed.

Our proposed method adopts a model of the form y = f(x),
where f ∈ H. In addition, a decomposition of the noise into

two parts, a sparse outlier vector u and the inlier vector η

is employed. The method employs a two step algorithmic

procedure attempting to estimate both the outliers and also

the original (unknown) function f
¯
. The algorithm alternates

between a) a greedy-type algorithm based on the popular

Orthogonal Matching Pursuit (OMP) [18]–[20], that selects

the dominant outlier sample in each step, and b) a kernel ridge

regression task to update the current estimate of f
¯
. Results

regarding convergence as well as the theoretical properties

concerning the identification of the outliers are also pro-

vided. Moreover, comparisons against the previously published

approaches, based on the Bayesian framework and on the

minimization of the ℓ1-norm for the sparse outlier vector, are

performed.
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The rest of the paper is organized as follows. In section

II, the basic properties of RKHS are summarized, and in

section III the problem is formulated and comparable state-

of-the-art methods are presented. Next, in section IV, the

proposed scheme is introduced and described in detail. Section

V provides the theoretical results regarding the convergence

of the scheme as well as the identification of the outliers. In

section VI, extended tests of the proposed scheme against other

cutting edge methods are performed. There, the efficiency of

the proposed method in terms of both the achieved mean

square error (MSE) as well as the convergence time is studied.

Finally, in section VII, the method is applied to the task of

robust image denoising in order to optimally remove the noise

component that comprises a mix of impulsive and Gaussian

sources.

Notation: Throughout this work, capital calligraphic letters

are employed to denote sets, e.g., S, where Sc denotes the

complement of S. Small letters denote scalars, e.g., ε, while

bold capital letters denote matrices, e.g., X , bold lowercase

letters are reserved for vectors, e.g., θ (each vector is regarded

as a column vector) and the symbol ·T denotes the transpose

of the respective matrix/vector. Also, diag(a), where a is a

vector, denotes the respective square diagonal matrix1, while

supp(a) denotes the support set of the vector a. The j−th

column of matrix X is denoted by xj and the element of the

i−th row and j−th column of matrix X by xij . Moreover, the

i−th element of vector θ is denoted by θi. An arithmetic index

in parenthesis, i.e., (k), k = 0, 1, . . . , is reserved to declare an

iterative (algorithmic) process, e.g., on matrix X and vector

r the iteratively generated matrix and vector are denoted by

X(k) and r(k), respectively. Following this rationale, r(k),i
is reserved for the i−th element of the iteratively generated

vector r(k). The notation XS denotes the matrix X restricted

over the set S, i.e., the matrix that comprises the columns of

X , whose indices belong to the ordered index set S = {j1 <
· · · < js}. Accordingly, the notation uS denotes the elements

of vector u, restricted over the set S ⊆ supp(u). Finally, the

identity matrix of dimension N will be denoted as IN where

ej is its j−th column vector, the zero matrix of dimension

N × N , as ON , the vector of zero elements of appropriate

dimension as 0 and the columns of matrix IN restricted over

the set S, as IS .

II. PRELIMINARIES

In this section, an overview of some of the basic properties

of the RKHS is provided [1], [21]–[25]. An RKHS is a Hilbert

space H over a field F for which there exists a positive definite

function, κ : X × X → F, such that for every x ∈ X , κ(·,x)
belongs to H and f(x) = 〈f, κ(·,x)〉H, for all f ∈ H; in

particular, κ(x,y) = 〈κ(·,y), κ(·,x)〉H. The Gram matrix K ,

corresponding to the kernel κ, i.e., the matrix with elements

κij := κ(xi,xj), is positive definite for any selection of

finite number of points x1,x2, . . . ,xN , N ∈ N
∗. More-

over, the fundamental Representer Theorem establishes that

although an RKHS may have infinite dimension, the solution

1This matrix has the vector’s coefficients on its diagonal, while all other
entries are equal to zero.

of any regularized regression optimization task lies in the

span of N specific kernels, e.g., [1], [21]. In other words,

each minimizer f ∈ H admits a representation of the form

f =
∑N

j=1 αjκ(·,xj). However, in many applications (also

within this approach) a bias term, c, is often included in the

aforementioned expansion; i.e., we assume that f admits the

following representation:

f =

N∑

j=1

αjκ(·,xj) + c. (2)

The use of the bias term is theoretically justified by the Semi-

parametric Representer Theorem, e.g., [1], [21].
Although there are many kernels to choose from, in

this manuscript the experiments are focused on the real

Gaussian radial basis function (RBF), i.e., κσ(x,x
′) :=

exp
(
−‖x− x′‖2/σ2

)
, defined for x,x′ ∈ R

M , where σ,

is a free positive parameter that defines the shape of the

kernel function. In the following, κ is adopted to denote the

Gaussian RBF. An important property of this kernel is that the

corresponding matrix, K , given by κij := exp(− ||xi−xj ||
2

σ2 ),
has full rank. The significance of the theorem is that the points

κ(·,x1), κ(·,x2), ..., κ(·,xN ) ∈ H are linearly independent,

i.e., span the N -dimensional subspace of H, [21].

III. PROBLEM FORMULATION AND RELATED WORKS

A. Robust Ridge Regression in RKHS

Given the data set D = {(yi,xi)}Ni=1, we assume that each

observation yi is related to the corresponding input vector, xi,

via

yi = f
¯
(xi) + u

¯ i
+ ηi, i = 1, . . . , N, (3)

where f
¯
∈ H and H is a specific RKHS. The variable u

¯ i
represents a possible outlier sample and ηi a noise component.

In a more compact form, this can be cast as y = f
¯
+ u

¯
+ η,

where f
¯

is the vector containing the values f
¯
(xi) for all

i = 1, . . . , N . As u
¯

represents the vector of the (unknown)

outliers, it is reasonable to assume that this is a sparse vector.

Our goal is to estimate the input-output relation f
¯

from the

noisy observations of the data set D. This can be interpreted

as the task of simultaneously estimating both a sparse vector

u and as well as a function f ∈ H, that maintains a low

squared error for L(D, f,u) =
∑N

i=1 (yi − f(xi)− ui)
2
.

Moreover, motivated by the representer theorem, we adopt the

representation in (2), as a means to represent the solution for

f . Under these assumptions, equation (3) could be expressed

in a compact form as

y = Kα
¯
+ c

¯
1+ u

¯
+ η = X(0)

(
α
¯c
¯

)

+ v, (4)

where K is the kernel matrix, X(0) = [K 1] (1 is the

vector of ones) and v = u
¯
+ η is the total noise vector

(outlier plus inlier). Accordingly, the squared error is written

as L(D,α, c,u) = ‖y −Kα− c1− u‖22, and the respective

minimization task can be cast as:

min
u,α∈RN ,c∈R

‖u‖0

s. t. ‖y −Kα− c1− u‖22 + λ

∥
∥
∥
∥

(
α

c

)∥
∥
∥
∥

2

2

≤ ε,
(5)
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for some predefined parameters ε, λ > 0, where we have also

used a standard regularization technique in order to keep the

norm of the vector for the kernel expansion coefficients low.

An alternative regularization strategy, which is common in

the respective literature (based on KRR), is to include the

norm of f , i.e., ‖f‖2H = αTKα, instead of the norm of the

coefficients’ vector, leading to the following task:

min
u,α∈RN ,c∈R

‖u‖0
s. t. ‖y −Kα− c1− u‖22 + λαTKα ≤ ε.

(6)

B. Related Works

Two methods that deal with the RKRR task have

already been established. The first method is based on the

minimization of the ℓ1 norm for the sparse outlier vector

(instead of the ℓ0 norm) and the second one employs sparse

Bayesian learning arguments.

RAM: Refined Alternating Directions Method of Multipli-

ers

The method is based on the ℓ1-norm minimization for the

sparse outlier vector (similar to the formulation in (6)). Next,

by expressing the task in the LASSO form, the authors have

established the so-called AM solver, which deals with the task

via the alternating directions method of multipliers (ADMM).

Furthermore, by using this solution as an initialization they

have improved the scheme via the use of the reweighted ℓ1-

norm technique, as proposed in [26]. The resulting method is

called RAM and stands for refined AM solver. More details

over the scheme can be found in [14].

RB-RVM: Robust Relevance Vector Machine - Sparse

Bayesian Learning

The Sparse Bayesian learning scheme is based on the RVM

rationale and it employees hyper-parameters in order to infer

not only the unknown kernel coefficients but also the sparse

outlier estimate. More details on this approach can be found

in [15], [27].

IV. KERNEL GREEDY ALGORITHM FOR ROBUST

DENOISING (KGARD)

A. Motivation and Proposed Scheme

Our proposed scheme alternates between a regularized Least

Squares step and an OMP selection step based on the residual.

At this point, it must be pointed out that that raw residuals can

fail to detect outliers at leverage points; this is also known as

swamping and masking of the outliers, [2]. It is well known

that this is related to the input data. In our particular non-linear

regularized setting, this occurs when the diagonal elements

of the matrix H = X(0)(X
T
(0)X(0))

−1XT
(0) get values close

to one. As a result (following the assumption in [2]), it is

reasonable to assume that max1≤i≤N hii = h << 1; in other

words and taking also into account that the outlier vector

is sparse, we assume that the outliers can be successfully

detected via the residual of the Least Squares step. For more

details, read [2] and [28].

In the following, we build upon the two formulations (5)

and (6), that attempt (and indeed succeed) to solve the robust

Algorithm 1 Kernel Greedy Algorithm for Robust Denoising:

KGARD

1: procedure KGARD(K, y, λ, ǫ)
2: k ← 0
3: S0 ← {1, 2, ..., N + 1}, Sc0 ← {N + 2, ..., 2N + 1}
4: ẑ(0) ←

(
XT

S0
XS0 + λBS0

)−1
XT

S0
y

5: r(0) ← y −XS0 ẑ(0)
6: while ‖r(k−1)‖2 > ǫ do

7: k ← k + 1
8: jk ← argmaxj∈S̃c

k
|r(k−1),j | ⊲ (S̃ck in (11)).

9: Sk ← Sk∪{jk+N+1}, Sck ← Sck−{jk+N+1}
10: ẑ(k) ←

(
XT

Sk
XSk

+ λBSk

)−1
XT

Sk
y

11: r(k) ← y −XSk
ẑ(k)

12: Output: ẑ(k) =
(

α̂T
(k), ĉ(k), û

T
(k)

)T

after k iterations.

Least Squares task. Obviously, the difference lies solely on

the regularization term. In the first approach, the regulariza-

tion is performed using the ℓ2-norm of the unkown kernel

parameters (which is a standard regularization technique in

linear methods). In contrast, in the alternative formulation we

perform the regularization via the H-norm of f . The reason

for this modification was the improved performance obtained

in practice via the first approach.

Since both tasks in (5) and (6) are known to be NP-hard, a

straight-forward computation of a solution seems impossible.

However, under certain assumptions, greedy-based techniques

often manage to provide accurate solutions to ℓ0-norm mini-

mization tasks, which are also guaranteed to be close to the

optimal solution. The proposed KGARD algorithm, which is

based on a modification of the popular Orthogonal Matching

Pursuit (OMP), has been adapted to both formulations, i.e.,

(5) and (6).

First, one should notice that, the quadratic inequality con-

straint could also be written in a more compact form as

follows:

J(z) = ‖y −Xz‖22 + λzTBz ≤ ε, (7)

where X =
[
K 1 IN

]
, z = (αT , c,uT )T , (8)

and for the choice of matrix B either one of the following

matrices can be used,

B =





IN 0 ON

0
T 1 0

T

ON 0 ON



 or





K 0 ON

0
T 0 0

T

ON 0 ON



 , (9)

depending on whether (5) or (6) is adopted, respectively.

The proposed method, as presented in Algorithm 1, attempts

to solve the task (5) or (6), via a sparse greedy-based approach.

The algorithm alternates between an LS task and a column

selection step, that enlarges the solution subspace at each step,

in order to minimize the residual error. The scheme shares

resemblances to the OMP algorithm. Its main differences, are:

(a) the solution of a regularized LS task at each iteration

(instead of a simple LS task), i.e.,

min
z

Jk(z) = min
z

{
‖y −XSk

z‖22 + λzTBSk
z
}
, (10)
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and (b) the use of a specific initialization on the solution

and the residual. These seemingly small differences lead to

a completely distinct performance analysis for the method

as compared to the standard OMP. The scheme is specified

best, via the use of subsets, corresponding to a set of active

and inactive columns, for any given matrix. In particular, the

2N +1 column vectors of the matrices X and B are divided

into two complementary subsets: the active set, Sk , which

contains the indices of the active columns of the matrix at

step k, and the inactive set, Sck, which contains the remaining

ones; i.e., those that do not participate in the expansion. Thus,

XSk
and BSk

denote the column vectors of matrices X and

B, respectively, restricted over the subset Sk. Moreover, we

define the set of indices

S̃ck := {i−N − 1| i ∈ Sck} , (11)

which is very helpfull for the description of the proposed

method. While the set Sck refers to the columns of the

augmented matrix X , the set S̃ck refers to the columns of

the identity matrix (the last part of matrix X), i.e., matrix

IN . In other words, S̃ck originates by subtracting the value

N + 1 from each one of the elements of Sck. Initially, only

the first N + 1 columns of matrices X and B, have been

activated. Thus, k = 0, leads to the initialization of the active

set S0 = {1, 2, . . . , N + 1} with the corresponding matrices:

XS0 = [K 1],

and BS0 =IN+1 or

[
K 0

0
T 0

]

,

depending on the model selection, i.e., (5) or (6) respectively.

Hence, the solution to the initial LS problem, is given by

ẑ(0) := argminz{J0(z)} =
(
XT

S0
XS0 + λBS0

)−1
XT

S0
y.

Next, the method computes the residual r(0) = y −XS0 ẑ(0)
and identifies an outlier2, as the largest value of the residual

vector. The corresponding index, say j1 ∈ S̃ck, is added into

the set of active columns, i.e., S1 = S0 ∪ {jk + N + 1}.
Thus, the matrix XS0 is augmented by a column drawn from

matrix IN , forming matrix XS1 . Accordingly, the matrix BS0

is augmented by a zero row and a zero column, forming BS1 .

The new LS task is solved again (using matrices XS1 , BS1 )

and a new residual r(1) is computed. The process is repeated,

until the residual drops below a predefined threshold.

Although, both approaches, (5) and (6), are suitable for

dealing with the sparse minimization task, in practise the

selection of (5) proves a better choice. To this end, in the

future, the model (5) is adopted and thus the respective B

matrix is used.

Remark 1. In order to simplify the notation, in the next

sections, we adopt X(k) and B(k) to refer to the matrices

XSk
and BSk

at the k step.

Remark 2. Once a column has been selected at the k step,

it cannot be selected again in any subsequent step, since the

corresponding residual coordinate is zero. In other words, the

2If outliers are not present, the algorithm terminates and no outlier estimate
exists in the solution ẑ0.

algorithm always selects a column from the last part of X ,

i.e., matrix IN , that is not included in Sk.

B. Efficient Implementations

As the outliers often comprise a small fraction of the

data set, i.e., k << N , a fast implementation time for

OMP-like schemes such as KGARD is expected. Initially,

the inversion of matrix XT
(0)X(0) + λB(0) plus the

multiplication of XT
(0)y, requires O

(
(N + 1)3

)
flops. At

each one of the subsequent steps, the required complexity

is O
(
(N + k + 1)3

)
, while the total cost for the method

is O
(
(N + 1)3(k + 1) + (5/2)N2k2 + (4/3)Nk3 + k4/4

)
,

which is acceptable, since k << N is assumed. However, the

complexity of the method could be further reduced, since a

large part of the inverted matrix remains unchanged. To this

end, several methods could be employed, [29].

The first technique, which has been applied to the proposed

scheme, is the matrix inversion lemma (MIL), which reduces

the cost from cubic to square. However, an alternative tech-

nique which is even more efficient and is used throughout

this paper is the Cholesky decomposition for the matrix to be

inverted. This is summarized in the following steps:

• Replace step 4 of algorithm 1, with:

Factorization step: M(0) = L(0)L
T
(0)

Solve L(0)L
T
(0)ẑ(0) = XT

(0)y using:

– forward substitution L(0)q = XT
(0)y

– backward substitution LT
(0)ẑ(0) = q

Complexity: O
(
(N + 1)3/3 + (N + 1)2

)

• Replace step 10 of algorithm 1, with:

Compute d such that: L(k−1)d = XT
(k−1)ejk

Compute: b =
√

1− ||d||22
Matrix Update: L(k) =

[
L(k−1) 0

dT b

]

Solve L(k)L
T
(k)ẑ(k) = XT

(k)y using:

– forward substitution L(k)p = XT
(k)y

– backward substitution LT
(k)ẑ(k) = p

Complexity: O
(
(9/2)N2 + 5Nk + (3/2)k2

)
per iteration.

Employing the Cholseky decomposition plus the update step

leads to a reduction of the total computational cost to

O
(
(N + 1)3/3 + (N + 1)2 + k3/2 + (5/2)Nk2

)
, which is

the fastest implementation for this task (recall that k << N ).

C. Further Improvements on KGARD’s Performance

In order to simplify the theoretical analysis and reduce

the corresponding equations, the proposed algorithm employs

the same regularization parameter for all kernel coefficients.

However, one may employ a more general scheme as follows:

min
u,a∈RN ,c∈R

‖u‖0
s. t. ‖y −Ka− c1− u‖22 + ‖Ψa‖22 + λc2 ≤ ε,

where Ψ is a more general regularization matrix (Tikhonov

matrix). For example, as the accuracy of kernel based methods

usually drops near the border of the input domain, it is

reasonable to increase the regularization effect at these points.

This can be easily implemented by employing a diagonal

matrix with positive elements on the diagonal (that correspond
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to λ) and increase the regularization terms that correspond

to the points near the border. This is demonstrated in the

experimental section VI.

V. THEORETICAL ANALYSIS

In the current section, the theoretical properties of the

proposed robust kernel regression method, i.e., KGARD, are

analysed. First, we establish that the method always converges

in finite time and that the reconstruction error of the method is

strictly decreasing. Next, we provide the necessary conditions

so that the proposed method succeeds in identifying first the

locations of all the outliers, for the case where only outliers

exist in the noise. The derived theoretical condition for the

second part (i.e., the outlier identification) is rather tight.

However, as demonstrated in the experiments, the method

achieves to recover the correct support of the sparse outlier

vector in many cases where the theoretical result doesn’t

hold. This leads to the conclusion that the provided conditions

can be loosen up significantly in the future. Moreover, in

practice, where inlier noise also exists, the method succeeds

to correctly identify the majority of the outliers. The reason

that, the analysis is carried out for the case where inlier noise

is not present, is due to the fact that the analysis gets highly

involved. The absence of the inlier noise makes the analysis

easier and it highlights some theoretical aspects on why the

method works. It must be emphasized that, such a theoretical

analysis is carried out for the first time and is absent in the

previously published works.

A. Convergence Analysis

Regarding the convergence of the algorithm, it is easy to

check that the proposed algorithm will always converge in

finite time. Indeed, assuming the worst case scenario, where

the algorithm continues until all columns of IN are selected,

we can easily see that the norm of the residual vector will

eventually drop below ǫ. Of course, this is something that

occurs in the case where the parameter ǫ is set extremely low.

As a consequence, the procedure will continue and model all

noise samples (even those originating from an inlier source)

as impulses, filling up the vector u and producing a residual

vector equal to 0. Obviously, if ǫ is carefully tuned and the

outliers are sufficiently sparse, the algorithm will stop well

before that. Hence, a sensible tuning of ǫ should be applied.

Moreover, note that, for all ε ≥ 0, there exists z such that

Jk(z) ≤ ε. This implies that the feasible set of (5) is always

nonempty3. It is straightforward to prove that the set of normal

equations, obtained from (10), at step k, is

(XT
(k)X(k) + λB(k))z = XT

(k)y, (12)

where (XT
(k)X(k)+λB(k)) is invertible, i.e., (10) has a unique

minimum, for all k. Recall that the matrix on the left side in

(12) is (strictly) positive definite, hence invertible.

3For example, if we select z =
(

0
T , 0,yT

)T
, then Jk(z) = 0.

Alternatively, one could express (10) as follows4:

minz Jk(z) =

∥
∥
∥
∥

(
y

0

)

−D(k)z

∥
∥
∥
∥

2

2

, (13)

where D(k) =

[
X(k)√
λB(k)

]

. Problem (13) has a unique solution,

if and only if the nullspaces of X(k) and B(k) intersect

only trivially, i.e., N (X(k)) ∩ N (B(k)) = {0} [30], [31].

Hence, M(k) = DT
(k)D(k) is (strictly) positive definite, as the

columns of D(k) are linearly independent and the minimizer

z∗ ∈ R
N+1+k of (10) is unique, [32]. Furthermore, similarly

to the discussion in Section III, an equivalent formulation for

(10) is

min
z
||y −X(k)z||22, s.t. ||B(k)z||2 ≤ δ, (14)

for some δ > 0. In (14), the regularization term is replaced

by a quadratic constraint. Equivalence between (10) and (14)

has been well studied and established [33]. The reason for

resorting to the latter formulation is to be used for the proof

of the following lemma.

Lemma 1. The norm of the residual for KGARD is strictly

decreasing.

Proof. Recall that during initialization, KGARD sets S0 to

include only the first N + 1 columns of matrices X , B

and let ẑ(0) denote the initial solution of (14) and r(0) =
y − X(0)ẑ(0) be the initial residual. Since our goal is to

remove the unknown/unwanted additive noise, it is expected

that y /∈ R(X(0)) (the range of the matrix), regardless of the

statistics of the additive noise (Gaussian, impulse or both).

Suppose, now, that the ℓ2 norm of the residual r(0) is below

our threshold parameter ǫ. In this case, the method is forced to

stop; either no outlying values are identified or the threshold

parameter is tuned extremely high. Nevertheless, the case of

greater importance, is when outliers are present; the algorithm

continues expanding the set of active columns with columns

from the identity matrix and thus a sparse outlier vector is

generated.

At each subsequent iteration, k, the algorithm selects an

index from the set Sck−1 of inactive columns from matrix X .

Then, Sk−1 is enlarged by the selected index (say jk) and

the matrix X(k−1) is augmented by the column vector ejk
forming Sk and X(k), respectively. Finally, the solution ẑ(k) ∈
R

N+k+1 and the residual r(k) = y−X(k)ẑ(k) are computed,

respectively, by solving (14) (step 10 of the algorithm). At k+1
step, the process is repeated and the matrices are augmented.

At this stage we have, X(k+1) = [X(0) ej1 · · · ejk ejk+1
] =

[X(k) ejk+1
].

Now, let ẑ(k+1) ∈ R
N+k+2 be the unique minimizer

of Lk+1(z) = ||y − X(k+1)z||22 subject to the constraint

‖B(k+1)z‖2 ≤ δ, i.e., the minimization of (14) at the k + 1
step. Also, let z(k+1) = (ẑT

(k), r(k),jk+1
)T . Observe that z(k+1)

belongs to the feasible set defined by the inequality constraint

4Notice that B is a projection matrix (this holds only for the regularization
performed with the ℓ2 norm).
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of (14) at the current step5, and hence Lk+1(ẑ(k+1)) ≤
Lk+1(z(k+1)). Moreover, we have that

Lk+1(z(k+1)) =

∥
∥
∥
∥
y −

[
X(k) ejk+1

]
·
(

ẑ(k)
r(k),jk+1

) ∥
∥
∥
∥

2

2

=
∥
∥y − X(k)ẑ(k) − r(k),jk+1

ejk+1

∥
∥
2

2

=
∥
∥r(k) − r(k),jk+1

ejk+1

∥
∥
2

2
<

∥
∥r(k)

∥
∥
2

2
, (15)

where the last strict inequality is due to the fact that

|r(k),jk+1
| > 0 (if r(k),jk+1

= 0, then r(k) is a zero vector,

since its maximum value is 0 and the algorithm should

have been terminated at iteration k). Thus, we conclude that

‖r(k+1)‖22 = Lk+1(ẑ(k+1)) ≤ Lk+1(z(k+1)) < ‖r(k)‖22.

B. Identification of the Outliers for the Noiseless Case

The following theorem establishes a bound on the largest

singular value of matrix X(0), which guarantees that the

method first identifies the correct locations of all the outliers,

for the case where only outliers exist in the noise. However,

since the ǫ parameter controls the number of iterations, for

which the method identifies an outlier, it is not guaranteed

that it will stop once all the outliers are identified, unless the

correct value is somehow given. Thus, it is possible that a few

other locations, that do not correspond to outliers, are also

identified. It must be pointed out that, such a result has never

been established before by other comparative methods.

Theorem 1. Let K be a full rank, square, real valued matrix.

Suppose, that

y = [K 1] (αT

¯
, c
¯
)T

︸ ︷︷ ︸

θ
¯

+u
¯
,

where u
¯

is a sparse (outlier) vector. KGARD is guaranteed

to identify first the correct locations of all the outliers, if the

maximum singular value of matrix X(0) := [K 1], satisfies:

σM (X(0)) < γ
√
λ, (16)

where γ =

√

min |u
¯
| −
√
2λ||θ

¯
||2

2||u
¯
||2 −min |u

¯
|+
√
2λ||θ

¯
||2

, (17)

min |u
¯
| is the smallest absolute value of the sparse vector over

the non-zero coordinates and λ > 0 is a sufficiently large6

regularization parameter for KGARD.

The proof is briefly presented in the Appendix section. For

a more detailed proof see [28].

Remark 3. The theorem does not guarantee that only the

locations of the true outliers will be identified. If the value

of ǫ is too small, then KGARD once it identifies the location

of the true outliers, it will next identify locations that do not

correspond to outlier indices.

5Geometrically the feasible set remains the same, while matrix B is
augmented by zero elements at each step.

6Since the regularization parameter is defined by the user, we assume that
such a value can be achieved, so that the γ parameter makes sense. More
details can be found in the proof at the appendix section.
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Fig. 1: Percentage of the correct (green pointing up) and wrong

(orange pointing down) indices that KGARD has identified,

while varying the values±u
¯

of the outliers at the fixed fraction

of 10%. Although the condition (16) is valid only for values

greater than ±600 (and with high probability valid for values

400-599), the support of the sparse outlier vector has been

correctly identified for much smaller values of outlier noise,

too.

Outlier fraction Correct support Wrong support Outlier value u
5 % 100 % 0 % 450

10 % 100 % 0 % 600

15 % 100 % 0 % 650

20 % 100 % 0 % 700

25 % 100 % 0 % 750

30 % 100 % 0 % 950

TABLE I: Percentage of correct and wrong indices identified

for all outlier values u
¯

ranging from 50 to 1000. The correct

support corresponds to true outliers (indices in T ), while the

wrong one corresponds to points which are wrongly classified

as outliers (thus do not belong to T ). In the final column the

minimum value u
¯

of outliers for which the support recovery

condition is valid, is listed.

VI. EXPERIMENTS

For the entire section of experiments, the Gaussian (RBF)

kernel is employed and all the results are averaged over 1000

“Monte Carlo” runs (independent simulations). At each exper-

iment, the parameters are optimized (via cross-validation) and

the respective parameter values are given (for each method),

so that results are reproducible. The specific MATLAB code

can be found in http://bouboulis.mysch.gr/kernels.html.

A. Identification of the Outliers

In the current section, our main concern is to test on the

validity of the condition (16) in practise. To this end, we have

performed the following experiment, for the case where only

outliers exist in the noise.

We consider N = 100 equidistant points over the in-

terval [0, 1] and generate the output data via f
¯
(xi) =

∑N
j=1 α¯ j

κ(xi, xj), where κ is the Gaussian kernel with σ =
0.1 and the vector of coefficients α

¯
= [α

¯
1, . . . , α

¯
N ] is a

sparse vector with the number of non-zero coordinates ranging

between 2 and 23 and their values drawn from N (0, 0.52).
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Method MSEtr MSEval Cor. - Wr. MIT Noise

RB-RVM 0.0850 0.0851 - 0.298 20 dB - 5%
RAM

λ = 0.07, µ = 2.5 0.0344 0.0345 100% - 0.2% 0.005 20 dB - 5%

KGARD
λ = 0.2, ε = 10 0.0285 0.285 100% - 0% 0.004 20 dB - 5%

RB-RVM 0.0911 0.0912 - 0.298 20 dB - 10%
RAM

λ = 0.07, µ = 2.5 0.0371 0.0372 100% - 0.1% 0.007 20 dB - 10%

KGARD
λ = 0.2, ε = 10 0.0305 0.0305 100 % - 0 % 0.008 20 dB - 10%

RB-RVM 0.0992 0.0994 - 0.299 20 dB - 15%
RAM

λ = 0.07, µ = 2 0.0393 0.0393 100% - 0.6% 0.008 20 dB - 15%

KGARD
λ = 0.3, ε = 10 0.0330 0.0330 100%- 0% 0.012 20 dB - 15%

RB-RVM 0.1189 0.1184 - 0.305 20 dB - 20%
RAM

λ = 0.07, µ = 2 0.0421 0.0422 100% - 0.4% 0.010 20 dB - 20%

KGARD
λ = 1, ε = 10 0.0626 0.0626 100% - 0% 0.017 20 dB - 20%

RB-RVM 0.3630 0.3631 - 0.327 15 dB - 5%
RAM

λ = 0.15, µ = 5 0.1035 0.1036 100%- 0.7% 0.005 15 dB - 5%

KGARD
λ = 0.3, ε = 15 0.0862 0.0862 100% - 0.1% 0.005 15 dB - 5%

RB-RVM 0.3828 0.3830 - 0.319 15 dB - 10%
RAM

λ = 0.15, µ = 5 0.1117 0.1118 100% - 0.4 % 0.006 15 dB - 10%

KGARD
λ = 0.3, ε = 15 0.0925 0.0925 100% - 0% 0.008 15 dB - 10%

RB-RVM 0.4165 0.4166 - 0.317 15 dB - 15%
RAM

λ = 0.15, µ = 5 0.1186 0.1186 100% - 0.3% 0.007 15 dB - 15%

KGARD
λ = 0.3, ε = 15 0.1001 0.1003 100% - 0% 0.012 15 dB - 15%

RB-RVM 0.4793 0.4798 - 0.312 15 dB - 20%
RAM

λ = 0.15, µ = 4 0.1281 0.1282 100% - 1.4 % 0.008 15 dB - 20%

KGARD
λ = 0.7, ε = 15 0.1340 0.1349 100% - 0% 0.016 15 dB - 20%

TABLE II: Computed MSE for f
¯
(x) = 20sinc(2πx) over the

training and validation set, percentage of correct and wrong

support recovered and mean implementation time (MIT) in

seconds, for each level of inlier noise and fraction of outliers.

Method MSEtr MSEval Cor. - Wr. supp MIT (sec) Outliers

RB-RVM 3.9825 3.6918 - 0.416 5%
RAM

λ = 0.2, µ = 22 2.0534 1.8592 100% - 0.1 % 0.010 5%

KGARD
λ = 0.15, ε = 46 1.7381 1.5644 100 % - 0.3 % 0.009 5%

RB-RVM 4.2382 3.8977 - 0.419 10%
RAM

λ = 0.2, µ = 18 2.2281 1.9926 100% - 0.9 % 0.013 10%

KGARD
λ = 0.15, ε = 44 1.8854 1.6750 100 % - 0.5 % 0.016 10%

RB-RVM 4.5749 4.2181 - 0.418 15%
RAM

λ = 0.2, µ = 17 2.5944 2.2846 100% - 1.6 % 0.016 15%

KGARD
λ = 0.2, ε = 42 2.1968 1.9375 99.9 % - 0.9 % 0.024 15%

RB-RVM 5.7051 5.0540 - 0.418 20%
RAM

λ = 0.2, µ = 16 3.0593 2.6703 99.9% - 2.3 % 0.020 20%

KGARD
λ = 0.4, ε = 42 3.0293 2.6113 99.9 % - 1 % 0.033 20%

TABLE III: Performance evaluation for each method, for the

case where the input data lies on the 2-dimensional space

and the output f
¯
∈ H is considered as a linear combination

of a few kernels. The inlier noise is considered random

Gaussian with σ = 3 and for various fractions of outliers,

the training and validation MSE, the percentage of correct

support recovered and the mean implementation time (MIT),

are listed.

Since no inlier noise exists, our corrupted data is given from

(3) for ηi = 0 and outlier values ±u
¯
. Moreover, since the

condition (16) is valid for fixed values of the parameters

involved, we have measured the ability of KGARD to recover

the support of the sparse outlier vector, i.e., T = supp(u
¯
),

while varying the values of the outliers. In Figure 1, the ability

of KGARD to identify the exact sparse outlier vector support

is demonstrated, for a fraction of outliers at 10%. On the

vertical axis, we have measured the percentage of correct and

wrong indices recovered, while varying the value u of the

outliers. In parallel, the bar chart demonstrates the validity of

the introduced condition (16). It is clear that, if the condition

holds, KGARD identifies the correct support of the sparse

outlier vector successfully. However, even if the condition is

rarely satisfied, e.g., for u
¯
= 100, the method still manages to

identify the correct support. This fact leads to the conclusion

that the condition imposed by (16) is rather strict. This is in

line with most sparse modeling related conditions, which, in

practice, fall short in predicting the exact recovery conditions.

Finally, in Table I, the previous experiment has been per-

formed for various fractions of outliers. In the second and

third column, we have listed the percentage of correct and

wrong indices (truly) identified by the method, for all values

of outliers ranging from 50 to 1000. Moreover, in the final

column, the minimum value of outliers, which renders the

condition valid, is shown. For example, in the second row

and for 10% of outliers, the condition is valid only for values

greater than 600 (last column of table I). However, the method

manages to correctly identify the support (one-to-one index -

columns two and three), not only for values u
¯

greater than

600, but for all outlier values, i.e, from the minimum value

of 50 to the maximum value of 1000. It should also be noted

that, experiments have been performed with the use of various

non-linear functions (not only linear combinations of kernels)

and results were similar to the ones presented here.

B. Evaluation of the Method: Mean-Square-Error (MSE)

In the current section, the previously established methods

that deal with the non-linear robust estimation with kernels,

i.e., the Bayesian approach RB-RVM and the weighted ℓ1-

norm approximation method (RAM), are compared against

KGARD in terms of the mean-square-error (MSE) perfor-

mance. Additionally, the evaluation is enhanced with a list

of the percentage of the correct and wrong indices that each

method has identified, for all methods except for the Bayesian

approach (not directly provided by the RB-RVM method).

Moreover, the mean implementation time (MIT) is measured

for each experiment. Finally, following section IV-C, for the

first experiment, we have increased the regularization value

λ of KGARD near the edge points/borders, as a means to

improve the performance. In particular, at the 5 first and 5 last

points (borders), the regularizer is automatically multiplied by

the factor of 5, with respect to the predefined value λ which

is used on the interior points. The experiments are described

in more detail next.

For the first experiment, we have selected the sinc function,

which is a popular one in machine learning. We consider

398 equidistant points over the interval [−0.99, 1) for the

input values and generated the uncorrupted output values via

f
¯
(xi) = 20sinc(2πxi). Next, the set of points is split into two

subsets, the training and the validation subset. The training

subset, with points denoted by (yi, xi), consists of the N =
199 odd indexed points (first, third, e.t.c.), while the validation

subset comprises the remaining points (denoted as (y′i, x
′
i)).

The original data of the training set, is then contaminated

by noise, as (3) suggests. The inlier part is considered to

be random Gaussian noise of appropriate variance (measured

in dB), while the outlier part consists of various fractions

of outliers, with constant values ±15, distributed uniformly

over the support set. Finally, the kernel parameter σ has been

set equal to σ = 0.15. Table II depicts the performance of

each method, where the best results are marked in bold. In

terms of the computed MSE, it is clear that KGARD attains a

lower MSE for both the training and the validation error for all

fractions of outliers, except for the fraction of 20%. This fact is

also in line with the theoretical properties of the sparse greedy
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methods, since their performance boosts as the sparsity level of

the approximation is low. On the other hand, the RAM solver

seems more suitable for larger fractions of outliers. Moreover,

the computational cost is comparable for both methods (RAM

and KGARD), for small fractions of outliers. Regarding the

identification of the sparse outlier vector support, although

both methods correctly identify the indices that belong to

the sparse outlier vector’s support, i.e., T = supp(u
¯
), RAM

(wrongly) identifies more indices as outliers than KGARD.

For the second pilot experiment, KGARD’s performance

is tested for the case where the input data lies on a two-

dimensional subspace. To this end, we consider 31 points

in [0, 1] and separate these points, to form the training set,

which comprises 16 odd indices and the rest 15, forming

the validation set. Next, the 312 points are distributed over a

squared lattice in plane [0, 1]× [0, 1], where each uncorrupted

measurement is generated by f
¯
(xi) =

∑312

j=1 α¯ j
κ(xi,xj),

(σ = 0.2) and a sparse coefficient vector α
¯
= [α

¯ 1
, . . . , α

¯ 31
]

with non-zero values ranging between 4%− 17.5% and their

values randomly drawn from N (0, 25.62). Thus, the training

subset, consists of N = 162 points, while the remaining 152

correspond to the validation/test subset. According to equation

(3), the original observations of the training set are corrupted

by inlier noise originating from N (0, 32) and outlier values

±40. The results are given in Table III for various fractions

of outliers, with the best values of the MSE marked in bold.

It is evident that, for the 2-dimensional non-linear denoising

task, KGARD’s performance outperforms its competitors (in

terms of MSE), for all fractions of the outliers.

Finally, it should also be noted that, although RB-RVM

does not perform at the highest level, it has the advantage

that needs no tuning of parameters, albeit at substantially

increased computational cost. On the contrary, the pair of

tuning parameters for RAM, renders the method very difficult

to be fully optimized (in terms of MSE), in practise. In

contrast, taking into account the physical interpretation of ǫ
and λ associated with KGARD, in the noise denoising task,

we have developed a method for automatic user-free choice

of these variables.

VII. APPLICATION IN IMAGE DENOISING

In this section, in order to test the capabilities and verify

the performance of the proposed algorithmic scheme, we use

the KGARD framework to address one of the most popular

problems that rise in the field of image processing: the task

of removing noise from a digital image. The source of noise

in this case can be either errors of the imaging system itself,

errors that occur due to limitations of the imaging system, or

errors that are generated by the environment. Typically, the

noisy image is modeled as follows: g(x, x′) = g
¯
(x, x′) +

v(x, x′), for x, x′ ∈ [0, 1], where g
¯

is the original noise-

free image and v the additive noise. Given the noisy image g,

the objective of any image denoising method is to obtain an

estimate of the original image g
¯
. In most cases, we assume

that the image noise is Gaussian additive, independent at

each pixel, and independent of the signal intensity, or that

it contains spikes or impulses (i.e., salt and pepper noise).

(a) (b)

Fig. 2: (a) A square N × N region of intest (ROI). (b)

Rearranging the pixels of a ROI.

However, there are cases where the noise model follows other

probability density functions (e.g., the Poisson distribution or

the uniform distribution). Although the wavelet-based image

denoising methods dominate the research (see for example

[34]–[36]), there are other methods that can be employed suc-

cessfully, e.g., methods based on Partial Differential Equations,

neighborhood filters, or methods of non linear modeling using

local expansion approximation techniques [37]. The majority

of the aforementioned methods assume a specific type of

noise model. In fact, most of them require some sort of a

priori knowledge of the noise distribution. In contrast to this

approach, the more recently introduced denoising methods

based on KRR make no assumptions about the underlying

noise model and, thus, they can effectively treat more complex

models, [17].

In this section, we demonstrate how the proposed KGARD

algorithmic scheme can be used to treat the image denoising

problem in cases where the noise model includes impulses.

We will present two different denoising methods to deal

with this type of noise. The first one is directly based on

KGARD algorithmic scheme, while the second method splits

the denoising procedure into two parts: the identification and

removal of the impulses is first carried out, via the KGARD

and then the output is fed into a cutting edge wavelet based

denoising method to cope with the bounded noise component.

A. Modeling the Image and the Noise

In the proposed denoising method, we adopt the well known

and popular strategy of dividing the “noisy” image into smaller

N ×N square regions of interest (ROIs), as it is illustrated in

Figure 2. Then, we rearrange the pixels so that to form a row

vector. Instead of applying the denoising process to the entire

image, we process each ROI individually in sequential order.

This is done for two reasons: (a) Firstly, the time needed to

solve the optimization tasks considered in the next sections

increases polynomially with N2 and (b) working with each

ROI separately enables us to change the parameters of the

model in an adaptive manner, to account for the different level

of details in each ROI. The rearrangement shown in Figure

2 implies that, the pixel (i, j) (i.e., i-th row, j-th column)

is placed at the n-th position of the respective vector, where

n = (i − 1) ·N + j.

In KRR denoising methods, one assumes that each ROI

represents the points on the surface of a continuous function,

g
¯
, of two variables defined on [0, 1]× [0, 1]. The pixel values
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of the noise-free and the noisy digitized ROIs are represented

as ζ
¯ ij

= g
¯
(xi, x

′
j) and ζij respectively (both taking values

in the interval [0, 255]), where xi = (i − 1)/(N − 1),
x′
j = (j − 1)/(N − 1), for i, j = 1, 2, ..., N . Moreover, as

the original image g
¯

is a relatively smooth function (with

the exception close to the edges), we assume that it lies in

an RKHS induced by the Gaussian kernel, i.e., g
¯
∈ H, for

some σ > 0. Specifically, in order to be consistent with the

representer theorem, we will assume that g
¯

takes the form of

a finite linear representation of kernel functions centered at all

pixels, thus after pixel rearrangement we can write:

g
¯
=

N2
∑

n=1

α
¯ n

κ(·,xn), (18)

where xn = (xi, x
′
j) and n = (i − 1) · N + j. Hence, the

intensity of the n-th pixel is given by

ζ
¯n

= g
¯
(xn) =

N2
∑

m=1

α
¯ m

κ(xn,xm). (19)

The model considered in this paper assumes that the in-

tensity of the pixels of the noisy ROI can be decomposed as

ζij = ζ
¯ ij

+ u
¯ ij

+ ηij , for i, j = 1, 2, ..., N , where ηij denotes

the bounded noise component and u
¯ ij

the possible appearance

of an outlier at that pixel. In vector notation (after rearrange-

ment), we can write ζ = ζ
¯
+u

¯
+η, where ζ

¯
, ζ,u

¯
,η,∈ R

N2

,

‖η‖2 ≤ ǫ and u
¯

is a sparse vector. Moreover, exploiting (19),

we can write ζ
¯
= K · α

¯
, where κnm = κ(xn,xm). In this

context, we can model the denoising task as the following

optimization problem:

min
a,u∈RN2

,c∈R

‖u‖0
s. t. ‖ζ −Ka− c1− u‖22 + λ‖a‖22 + λc2 ≤ ε,

(20)

for some predefined λ, ε > 0. In a nutshell, problem (20)

solves for the sparsest outlier’s vector u and the respective

a (i.e., the coefficients of the kernel expansion) that keep the

error low, while at the same time preserve the smoothness of

the original noise-free ROI (this is done via the regularization

of the constraint’s inequality). The regularization parameter λ
controls the smoothness of the solution. The larger the λ is,

the smoother the solution becomes, i.e., ζ̂ = Kα̂.

B. Implementation

The main mechanism of both algorithms that are presented

in this section is simple. The image is divided into N×N ROIs

and the KGARD algorithm is applied in each individual ROI

sequentially. However, as the reconstruction accuracy drops

near the borders of the respective domain, we have chosen to

discard the values at those points. This means that although

KGARD is applied to the N×N ROI, only the L×L values are

used in the final reconstruction (those that are at the center of

the ROI). In the sequel, we will name the L×L centered region

as “reduced ROI” or rROI for short. We will also assume that

the dimensions of the image are multipliers of L (if they are

not, we can add dummy pixels to the end) and select N so

that N − L is an even number.

After the reconstruction of a specific rROI, the algorithm

moves to the next one, i.e., it moves L pixels to the right, or, if

the algorithm has reached the right end of the image, it moves

at the beginning of the line, which is placed L pixels below.

Observe that, for this procedure to be valid, the image has to

be padded by adding (N −L)/2 pixels along all dimensions.

In this paper, we chose to pad the image by repeating border

elements7. For example, if we select L = 8 and N = 12 to

apply this procedure on an image with dimensions8 32× 32,

we will end up with a total of 16 overlapping ROIs, 4 per line.

Another important aspect of the denoising algorithm is

the automated selection of the parameters λ and ǫ, that are

involved in KGARD. This is an important feature, as these

parameters largely control both the quality of the estimation

and the recovery of the outliers and have to be tuned for

each specific ROI. Naturally, it would have been intractable

to require a user pre-defined pair of values (i.e., λ, ǫ) for each

specific ROI. Hence, we devised simple methods to adjust

these values in each ROI depending on its features.

1) Automatic selection of the regularization parameter λ:

This parameter controls the smoothing operation of the denois-

ing process. The user enters a specific value for λ0 to control

the strength of the smoothening and then the algorithm adjusts

this value at each ROI separately, so that λ is small at ROIs

that contain a lot of “edges” and large at ROIs that contain

smooth areas. Whether a ROI has edges or not is determined

by the mean magnitude of the gradient at each pixel. The

rationale is described below:
• Select a user-defined value λ0.
• Compute the magnitude of the gradient at each pixel.
• Compute the mean gradient of each ROI, i.e., the mean value of the

gradient’s magnitude of all pixels that belong to the ROI.
• Compute the mean value, m, and the standard deviation, s, of the

aforementioned mean gradients.
• ROIs with mean gradient larger than m + s are assumed to be areas

with fine details and the algorithm sets λ = λ0.
• All ROIs with mean gradient lower than m− s/10 are assumed to be

smooth areas and the algorithm sets λ = 15λ0 .
• For all other ROIs the algorithm sets λ = 5λ0.

2) Automatic computation of the termination parameter ǫ:
In the image denoising case, the stopping criterion of KGARD

is slightly modified. Hence, instead of requiring the norm of

the residual vector to drop below ǫ, i.e., ‖r(k)‖2 ≤ ǫ, we

require the maximum absolute valued coordinate of r(k) to

drop below ǫ (
∥
∥r(k)

∥
∥
∞
≤ ǫ). The estimation of ǫ for each

particular ROI is carried out as follows. Initially, a user defined

parameter E0 is selected. At each step, a histogram chart with

elements |r(k),i| is generated, using
[
N2

10

]

+ 1 equally spaced

bins along the x-axis, between the minimum and maximum

values of |r(k),i|. Let h denote the heights of the bars of the

histogram and hm be the minimum height of the histogram

bars. Next, two real numbers, i.e., E1, E2, are defined. In

particular, the number E1 represents the left endpoint of the

first occurrence of a minimum-height bar (i.e., the first bar with

height equal to hm, moving from left to right). The number E2

represents the left endpoint of the first bar, ℓ, with height hℓ

(moving from left to right) that satisfies both hℓ−hℓ−1 ≥ 1 and

7This can be done with the “replicate” option of MatLab’s function
padarray.

8Observe that L divides 32.
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Algorithm 2 KGARD for image denoising

1: Input: the original noisy image I and λ0, σ, E0, N , L.
2: Output: the denoised image Î and the outliers’ image Ô.
3: Build the kernel matrix K.
4: if the dimensions of the original image are not multiplies of L then
5: Add initial padding

6: Form Î and Ô to the same dimensions as I.
7: Add padding with size N − L around the image.
8: Divide the image into N × N ROIs and compute the regularization

parameters for each ROI.
9: for each ROI R do

10: Rearrange the pixels of R to form the vector ζ.
11: Run the modified KGARD algorithm on the set ζ with parameter λ

and stoping criterion as described in section VII-B2.
12: Let â, û be the solution of KGARD.
13: Compute the denoised vector ζ̂ = Kâ.

14: Rearrange the elements of ζ̂ to form the denoised ROI R̂.
15: Extract the centered L× L rROI from R̂.
16: Use the values of the rROI to set the values of the corresponding

pixels in Î.
17: Rearrange the elements of û to form the outliers’ ROI.
18: Extract the centered L× L values of the outliers’ ROI.
19: Use these values to set the values of Ô.
20: Move to the next ROI.
21: Remove the initial padding on Î and Ô (if needed).

hℓ−1 ≤ hm + 5, ℓ ≥ 2. This roughly corresponds to the first

increasing bar, which in parallel is next to a bar with height

close to the minimum height. Both E1 and E2 are reasonable

choices for the value of ǫ (meaning that the bars to the right of

these values may be assumed to represent outliers)9. Finally,

the algorithm determines whether the histogram can be clearly

divided into two parts; the first one represents the usual errors

and the other the errors due to outliers by using a simple

rule: if

√
var(h(k))

mean(h(k))
> 0.9, then the two areas can be clearly

distinguished, otherwise it is harder to separate these areas.

Note that, we use the notation h(k) to refer to the heights of

the histogram bar at the k step of the algorithm. The final

computation of ǫ (at step k) is carried out as follows:

ǫ(k) =

{

min{E0, E1, E2}, if

√
var(h(k))

mean(h(k))
> 0.9

min{E0, E1}, otherwise.
(21)

It should be noted that, the user defined parameter E0 has little

importance in the evaluation of ǫ. One may set it constantly

to a value near 40 (as we did in all provided simulations).

However, in cases where the image is corrupted by outliers

only, a smaller value may be advisable, although it does not

have a great impact on the reconstruction quality.

3) Direct KGARD implementation: The first denoising

method, which we call KGARD for short, is described in Algo-

rithm 2. The algorithm requires five user-defined parameters:

(a) the regularization parameter, λ0, (b) the Gaussian kernel

width, σ, (c) the OMP termination parameter ǫ, (d) the size

of the ROI, N and (e) the size of the rROIs, that are used

in the reconstruction, i.e., L. However, these parameters are

somehow interrelated. We will discuss these issues in the next

sections.

4) KGARD combined with BM3D (KG-BM3D): This is

a two-step procedure, that combines the outliers detection

properties of KGARD with the denoising capabilities of a

9More details can be found in [28].

standard off-the-shelf denoising method. In this setting (which

is the one we propose), the KGARD is actually used to detect

the outliers and remove them, while the BM3D wavelet-based

denoising method [36] takes over afterwards to cope with the

bounded noise. Hence, the KGARD algorithm is firstly applied

onto the noisy image, to obtain the positions and values of

the reconstructed outliers, which are then subtracted from the

original noisy image and BM3D is applied to the result. This

method requires the same parameters as KGARD, plus the

parameter s, which is needed by the BM3D algorithm10.

C. Parameter Selection

This section is devoted on providing guidelines for the

selection of the user-defined parameters for the proposed

denoising algorithms. Typical values of N range between 8

and 16. Values of N near 8, or even lower, increase the time

required to complete the denoising process with no significant

improvements in most cases. However, if the image contains

a lot of “fine details” this may be advisable. In these cases,

smaller values for the width of the Gaussian kernel, σ, may

also enhance the performance, since in this case the regression

task is more robust to abrupt changes. However, we should

note that σ is inversely associated with the size11 of the

ROI, N , hence if one increases N , one should decrease σ
proportionally, i.e., keeping the product N · σ constant. We

have observed that the values N = 12 and σ = 0.3 (which

result to a product equal to N ·σ = 3.6) are adequate to remove

moderate noise from a typical image. In cases where the image

is rich in details and edges, N and σ should be adjusted to

provide a lower product (e.g., N = 12 and σ = 0.15, so that

N ·σ = 1.8). For images corrupted by high noise, this product

should become larger. Finally, λ controls the importance of

regularization on the final result. Large values imply a strong

smoothing operation, while small values (close to zero) reduce

the effect of regularization leading to a better fit; however, it

may lead to overfitting.

For the experiments presented in this paper, we fixed the size

of the ROIs using N = 12 and L = 8. These are reasonable

choices that provide fast results with high reconstruction

accuracy. Hence, only the values for σ and λ0 need to be

adjusted according to the density of the details in the image

and the amount of noise. We have found that the values of

σ that provide adequate results range between 0.1 and 0.4.

Similarly, typical values of λ0 range from 0.1 to 1. Finally,

the constant E0 was set equal to 40 for all cases.

The parameter s of the BM3D method is adjusted according

to the amount of noise presented in the image. It ranges

between very small values (e.g, 5), when only a small amount

of bounded noise is present, to significantly larger values (e.g.,

20 or 40) if the image is highly corrupted.

10BM3D is built upon the assumption that the image is corrupted by
Gaussian noise. Hence, the parameter s is the variance of that Gaussian noise,
if this is known a-priori, or some user-defined estimate. However, it has been
demonstrated that BM3D can also efficiently remove other types of noise, if
s is adjusted properly [17].

11For example, if N = 12 and σ = 0.3, then the kernel width is equal to
3.6 pixels. It is straightforward to see that, if N decreases to say 8, then the
kernel width that will provide a length of 3.6 pixels is σ = 0.45.
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(a) (b)

(c) (d)

(e) (f)

Fig. 3: (a),(b) The boat and Barbara images corrupted by 20

dB of Gaussian noise and 10% outliers. (c), (d) Denoising

with BM3D (28.97 dB and 29.2 dB). (d), (e) Denoising with

joint KG-BM3D (31.52 dB and 30.43 dB).

D. Experiments on Images Corrupted by Synthetic Noise

In this section, we present a set of experiments on grayscale

images that have been corrupted by mixed noise, which com-

prises a Gaussian component and a set of impulses (±100).

The intensity of the Gaussian noise has been ranged between

15 dB and 25 dB and the percentage of impulses from 5% to

20%. The tests were performed on three very popular images:

the Lena, the boat and the Barbara images, that are included

in Waterloo’s image repository. Each test has been performed

50 times and the respective mean PSNRs are reported. The

parameters have been tuned so that to provide the best result

(in terms of MSE). In Table IV, the two proposed methods

are applied to the Lena image and they are compared with

BM3D (the state of the art wavelet-based method) and an

image denoising method based on (RB-RVM) (“G. N.” stands

for Gaussian Noise and “Imp.” for Impulses). For the latter,

we chose a simple implementation, similar to the one we

propose in our methods: the image is divided into ROIs and

the RB-RVM algorithm is applied to each ROI sequentially.

The parameters were selected to provide the best possible

results in terms of PSNR. The size of the ROIs has been

set to N = 12 and L = 8 for the Lena and boat image.

As the Barbara image has more finer details (e.g., the stripes

of the pants) we have set N = 12 and L = 4 for this image.

Moreover, one can observe that for this image, we have used a

lower value for σ and λ as indicated in Section VII-C. Figure

3 demonstrates the obtained denoised images on a specific

experiment (20 dB Gaussian noise and 10% outliers). It is clear

that the proposed method (KG-BM3D) enhances significantly

the denoising capabilities of BM3D, especially for low and

moderate intensities of the Gaussian noise. If the Gaussian

component becomes prominent (e.g., at 15 dB) then the two

methods provide similar results. Regarding the computational

load, it only takes a few seconds in a standard PC for each

one of the two methods to complete the denoising process.
Finally, it is noted that we chose not to include RAM or

any ℓ1-based denoising method, as this would require efficient

techniques to adaptively control its parameters, i.e., λ, µ at

each ROI (similar to the case of KGARD), which remains

an open issue. Having to play with both parameters, makes

the tuning computationally demanding. This is because the

number of iterations for the method to converge to a reasonable

solution increases substantially, once the parameters are moved

away from their optimal (in terms of MSE) values12.

APPENDIX

APPENDIX A. PROOF OF THEOREM 1

Proof. Our analysis is based on the singular value decomposi-

tion (SVD) for matrix X(0) = [K 1]. Since matrix XT
(0)X(0)

is positive semi-definite, all of its eigenvalues are non-negative.

Let X(0) = QSV T , where Q,V are orthogonal and S is the

matrix of dimension N × (N + 1) of the form S =
[
Σ 0

]

and Σ is a diagonal matrix with entries σi ≥ 0, i = 1, ..., N .

For simplification, the notation σM will be used to denote the

maximum singular value of matrix X(0).
The proposed method attempts to solve at each step, the

regularized Least Squares (LS) task (10) for the selection of

matrix B. The latter task is equivalent to a LS problem in

the augmented space13 at each k-step, i.e., in (13), where

X(k) =
[
X(k−1) ejk

]
and B(k) =

[
B(k−1) 0

0
T 0

]

. Thus, the

LS solution at each k-step could be expressed as:

ẑ(k) = (XT
(k)X(k) + λB(k))

−1XT
(k)y (22)

and the respective residual is

r(k) = y−X(k)ẑ(k) = y−X(k)(X
T
(k)X(k)+λB(k))

−1XT
(k)y.
(23)

Step k = 0:

Initially, B(0) = IN+1 and S0 = {1, . . . , N + 1} (no index

has been selected for the outlier estimate), thus X(0) = [K 1].
Hence, the expression for the initial LS solution ẑ(0) is

obtained from equation (23) for k = 0. Employing the SVD

decomposition for matrix X(0), we have

X
T
(0)X(0) + λIN+1 = V

[
Σ

2 + λIN 0

0
T λ

]

︸ ︷︷ ︸

Λ

V
T = V ΛV

T . (24)

12If the parameters are not optimally tuned, the denoising process may take
more than an hour to complete in MATLAB on a moderate computer.

13This is due to the fact that B is a projection matrix (based on the ℓ2
regularization model).
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Method Parameters G. N. Imp. PSNR
BM3D s = 30 25 dB 5% 32.2 dB

RB-RVM σ = 0.3 25 dB 5% 31.78 dB
KGARD σ = 0.3, λ = 1 25 dB 5% 33.91 dB

KG-BM3D σ = 0.3, λ = 1, s = 10 25 dB 5% 36.2 dB
BM3D s = 30 25 dB 10% 30.84 dB

RB-RVM σ = 0.3 25 dB 10% 31.25 dB
KGARD σ = 0.3, λ = 1, ǫ = 40 25 dB 10% 33.49 dB

KG-BM3D σ = 0.3, λ = 1, s = 10 25 dB 10% 35.67 dB
BM3D s = 30 20 dB 5% 31.83 dB

RB-RVM σ = 0.4 20 dB 5% 29.3 dB
KGARD σ = 0.3, λ = 1 20 dB 5% 32.35 dB

KG-BM3D σ = 0.3, λ = 1, s = 15 20 dB 5% 34.24 dB
BM3D s = 35 20 dB 10% 30.66 dB

RB-RVM σ = 0.4 20 dB 10% 29.09 dB
KGARD σ = 0.3, λ = 1 20 dB 10% 31.94 dB

KG-BM3D σ = 0.3, λ = 1, s = 15 20 dB 10% 33.81 dB
BM3D s = 35 15 dB 5% 30.87 dB

RB-RVM σ = 0.6 15 dB 5% 26.74 dB
KGARD σ = 0.3, λ = 1.5 15 dB 5% 29.12 dB

KG-BM3D σ = 0.3, λ = 1, s = 25 15 dB 5% 31.18 dB
BM3D s = 40 15 dB 10% 29.94 dB

RB-RVM σ = 0.4 15 dB 10% 25.85 dB
KGARD σ = 0.3, λ = 2 15 dB 10% 28.47 dB

KG-BM3D σ = 0.3, λ = 1, s = 25 15 dB 10% 30.77 dB

TABLE IV: Denoising performed on the Lena image corrupted

by various types and intensities of noise using the proposed

methods, the RB-RVM approach and the state of the art

wavelet method BM3D.

Combining (23) for k = 0 with (24), leads to

r(0) = y −QGQTy, (25)

where G = Σ(Σ2 + λIN )−1
Σ is a diagonal matrix with

entries gii =
σ2
i

σ2
i +λ

, i = 1, 2, ..., n. Furthermore, substituting

y = X(0)θ
¯
+ u

¯
in (25) leads to

r(0) = u
¯
+QFV Tθ

¯
−QGQTu

¯
, (26)

where F = S − GS = [Σ−GΣ
︸ ︷︷ ︸

Φ

0]. Matrix Φ is also

diagonal, with values φii = λσi

σ2
i +λ

, i = 1, 2, ..., N. At this

point it is required to explore some of the unique properties

of matrices G and F . Recall that the (matrix) 2-norm of a

diagonal matrix is equal to the maximum absolute value of

the diagonal entries. Hence, it is clear that

||G||2 = σ2
M/(σ2

M + λ) and ||F ||2 = ||Φ||2 ≤
√
λ/2, (27)

since g(σ) = σ2

σ2+λ is a strictly increasing function of

σ ≥ 0 and φ(σ) = λσ
σ2+λ receives a unique maximum, which

determines the upper bound for the matrix 2-norm.

Finally, it should be noted that if no outliers exist in the

noise,the algorithm terminates due to the fact that the norm

of the initial residual is less than (or equal to) ǫ. However,

this scenario is rather insignificant since no robust modeling

is required. Thus, if our goal is for the method to be able

to handle various types of noise that includes outliers (e.g.

Gaussian noise plus impulses), we assume that ‖r(0)‖2 > ǫ.
In such a case KGARD identifies an outlier selecting an index

from the set S̃c0 = {1, 2, ..., N}.
At the first selection step, as well as at every next step, we

should impose a condition so that the method identifies and

selects an index that belongs to the support of the sparse outlier

vector. To this end, let T denote the support of the sparse

outlier vector u
¯

. In order for KGARD to select a column ei
from matrix IN that belongs to T , we should impose

|r(0),i| > |r(0),j |, for all i ∈ T and j ∈ T c. (28)

The key is to establish appropriate bounds, which guarantee

the selection of a correct index that belongs to T . Therefore,

we first need to develop bounds on the following inner

products. Using (27), the Cauchy-Schwarz inequality and the

fact that Q,V are orthonormal, it is easy to verify that

|〈el,QFV Tθ
¯
〉| ≤

√
λ

2
‖θ

¯
‖2 (29)

as well as |〈el,QGQTu
¯
〉| ≤ σ2

M

σ2
M + λ

‖u
¯
‖2 , (30)

for all l = 1, 2, ..., N . Thus, for any i ∈ T , we have that

|r(0),i| >min |u
¯
| −
√
2λ

2
‖θ

¯
‖2 −

σ2
M

σ2
M + λ

‖u
¯
‖2 ,

(31)

and |r(0),j | <
√
2λ

2
‖θ

¯
‖2 +

σ2
M

σ2
M + λ

‖u
¯
‖2 , (32)

for all j ∈ T c, where equation (26) and inequalities (29)

and (30) have also been used. Hence, imposing (28) leads

to (16). It should be noted that, a reason that could lead to

the violation of (16) is for the term min |u
¯
|−
√
2λ ‖θ

¯
‖2 to be

non-positive. Thus, since the regularization parameter is fine-

tuned by the user, we should select λ < (min |u
¯
|/ ‖θ

¯
‖2)

2 /2.

If the condition is guaranteed, then at the first selection step, a

column indexed j1 ∈ T is selected. The set of active columns

that participates in the LS solution of the current step is

then S1 = {j1} ⊆ T and thus X(1) =
[
X(0) ej1

]
and

B(1) =

[
IN+1 0

0
T 0

]

.

General k step:

At the k step, Sk = {j1, j2, ..., jk} ⊂ T and thus X(k) =
[
X(0) ISk

]
and B(k) =

[
IN+1 O(N+1)×k

OT
(N+1)×k Ok

]

. After

the selection of the first column, the LS step requires the

inversion of the matrix

DT
(k)D(k) =

[
XT

(0)X(0) + λIN+1 XT
(0)ISk

IT
Sk

X(0) Ik

]

.

By applying the Matrix inversion Lemma to DT
(k)D(k) com-

bined with (24) and then substituting into (23) leads to:

r(k) = P(k)u
¯
+ P(k)QFV Tθ

¯
− P(k)QGQTu

¯
, (33)

where P(k) = IN + QGQT ISk
W−1

(k) I
T
Sk
− ISk

W−1
(k) I

T
Sk

and W(k) = Ik − IT
Sk
QGQT ISk

. If we wish for the

algorithm to select an index from the set T , we should

impose |r(k),i| > |r(k),j |, for all i ∈ T /Sk, j ∈ T c.
Now P(k)(u

¯
− QGQTu

¯
) = u(k) − QGQTu(k), where

u(k) = u
¯
T /Sk

+ ISk
W−1

(k) I
T
Sk
QGQTu

¯
T /Sk

. Hence, the final

form of the residual is:

r(k) = u(k) + P(k)QFV Tθ
¯
−QGQTu(k). (34)

For l /∈ Sk, we conclude that

P T
(k)el = el + ISk

W−1
(k) I

T
Sk
QGQTel,

is a (k+1)-sparse vector. Furthermore, it is readily seen that,

∥
∥
∥W

−1
(k) I

T
Sk
QGQT el

∥
∥
∥
2
≤ σ2

M

λ
< 1, (35)
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which leads to
∥
∥
∥P T

(k)el

∥
∥
∥
2
<
√
2. Moreover,

|〈el,P(k)QFV Tθ
¯
〉| <

√
2λ

2
‖θ

¯
‖2 and ‖u(k)‖2 < ‖u

¯
‖2.
(36)

Accordingly, the bounds for the residual are now expressed as

|r(k),i| > min |u
¯
| −

√
2λ

2
‖θ

¯
‖2 −

σ2
M

σ2
M + λ

‖u
¯
‖2 , (37)

for any i ∈ T /Sk, and

|r(k),j | <
√
2λ

2
‖θ

¯
‖2 +

σ2
M

σ2
M + λ

‖u
¯
‖2 , (38)

for all j ∈ T c, where (34) and (36) are used. Finally, imposing

the lower bound of (37) to be greater than the upper bound

of (38) leads to the condition (16). At the k step, it has been

proved that unless the residual length is below the predefined

threshold the algorithm will select another correct atom from

the identity matrix and the procedure will repeat until Sk = T .
At this point, KGARD has correctly identified all possible

outliers and it is up to the tuning of the ǫ parameter whether the

procedure terminates (and thus no extra indices are classified

as outliers) or it continues and models other extra samples as

outliers.
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