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We present a new construction of fractal interpolation surfaces defined on arbitrary rectangular lattices.
We use this construction to form finite sets of fractal interpolation functions (FIFs) that generate mul-
tiresolution analyses d.fz(RZ) of multiplicity r. These multiresolution analyses are based on the dilation
properties of the construction. The associated multi-wavelets are orthogonal and discontinuous functions.
We give concrete examples to illustrate the method and generalize it to form multiresolution analyses of
LZ(R:), d > 2. To this end, we prove some results concerning thkelét exponent of FIFs defined on

[0, 119,
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multi-wavelets.

1. Introduction

Fractal interpolation, as introduced Barnsley(1986 (see alsdBarnsleyet al, 1989, is an alter-

native to traditional interpolation techniques, which gives a broader set of interpolants. In fact, many
traditional interpolation techniques (splines, hermite polynomials, etc.) are included as special cases.
Its main differences consist (a) in the definition of a functional relation (&9 that implies a self-
similarity in small scales, (b) in the constructive way (through iterations), that it is used to compute the
interpolant, instead of the descriptive one (usually a formula) provided by the classical methods and
(c) in the usage of some parameters, which are usually called vertical scaling factors, that are strongly
related with the fractal dimension of the interpolant. It was these properties (and especially the second
one) that led Geronimo, Hardin, Kessler and Massopust to use fractal interpolation functions (FIFs) for
the generation of multi-wavelets (sétardin et al, 1992 Geronimoet al, 1994 before the general
concept of multiresolution analysis of multiplicityhad been introduced iGoodmaret al. (1993 and
Goodman & Leg1994) (the construction presented @eronimoet al. (1994 is known as Geronimo—
Hardin—Massopust multi-wavelets and was latter constructe@Hoy & Lian (1996 without using

fractal interpolation). Their work led to the celebrated Donovan—Geronimo—Hardin—Massopust orthog-
onal multi-wavelets (seBonovanet al, 1996. The present work is highly motivated by their results
(and especially froniardinet al, 1992. We must point out that the construction of multi-wavelets via
fractal interpolation differs in a lot of ways from the standard wavelet techniques. The usual approach
is to seek for a solution of the refinement equation satisfying several properties (such as orthogonality,
continuity, high approximation order, etc.). The fractal interpolation approach on the other hand makes
use of suitable FIFs constructed to incorporate the desired properties. Interesting works regarding the
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construction of wavelets via fractal interpolation can also be foundandin & Marasovich 1999
Kessler 2007.

All the aforementioned constructions were based on FIFs defined on compact suli®eihefe
have been some efforts to generate multiresolution analyses from fractal interpolation surfaces (FISs),
especially on triangulations (s&eronimo & Hardin 1993 Kessler 2000 following the work ofMas-
sopusi(1990. Of course, one can always take the tensor product of the 1D case, but working directly on
two dimensions has certain advantages. Our work is based on a new construction of fractal interpolation
on rectangular lattices, which can be generalized to produce FIFs definedidf. [Ohe structure of
the paper is as follows: In Sectid) we briefly review the concept of iterated function systems (IFSs)
and fractal interpolation as laid out by Barnsley for the 1D case. In Se8tiare introduce the new
construction of fractal interpolation on rectangular lattices ofl]. Section4 deals with the compu-
tation of the inner product of two FISs, which is necessary for the computation of the multi-wavelets.
In Section5, we prove some results regarding the scaling properties of the construction. Saibtials
with the generation of the multiresolution analyses and the corresponding multi-wavelets. Finally, in
Section7 we generalize the construction to, l]4 and generate multiresolution analysesLo{RY).
The result regarding thedtder exponent of the constructed FIF is also found there since it is essential
for the validation of the construction.

2. Background

In this section, we briefly review the concept of fractal interpolation, as given by Barnsley for the 1D
case.

2.1 lIterated function system—recurrent iterated function system

Perhaps, the most typical way to construct fractal sets is via an IFS. ApXF®1_n } is defined as a
pair consisting of a complete metric spacg p), together with a finite set of continuous, contractive
mappingswi: X — X, with respective contraction factogs fori = 1,2,..., N (N > 2). The attractor
of an IFS is the unique sé&, for which E = limy_, .. WK(Ay) for every starting compact sé, where

N
W(A) = Jwi(A) forall Ae H(X)
i=1

and H(X) is the complete metric space of all non-empty compact subseks with respect to the
Hausdorff metrich (for the definition of the Hausdorff metric, properties(@(X), h) and examples of
IFS, seeBarnsley & Demkd1985 andBarnsley(1993 among others).

A notion closely related with IFS is that of the ‘recurrent iterated function system’ (RIFS) that
allows the construction of even more complicated sets. However, in this paper we will not deal with
RIFS, therefore we omit its definition.

2.2 Fractal interpolation functions

Barnsley(1986 was the first who considered the possibility of using IFS for data interpolation. He con-
structed functions that interpolate arbitrary data points, whose graphs are attractors of specific IFSs or
RIFSs (sed@arnsley 1986 Barnsleyet al, 1989. Barnsley called those functions ‘fractal interpolation
functions’ (FIFs) due to the fact that they may have non-integer fractal dimension. Here, we briefly
describe this construction based on IFSs.
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Let X = [0,1] x Rand 4 = {(x,yi):i = 0,1,..., N} be an interpolation set wittN + 1
interpolation points such that & xp < X3 < --- < Xy = 1. The interpolation points divide [Q]
into N intervalsli = [xi—1,X%],i = 1,..., N, which we call ‘domains’. We defing = x; — Xj_1,
i=12...,N

Next, we defindN mappings of the form

X Ti ()
wj = , fori=1,2,...,N, ()
(y) (Fi (X, Y))

whereT; (x) = aix+b; andF; (X, y) = 5 Y+ pi (X) (pi (X) is a polynomial). Each map; is constrained
to map the end points of the region [[J to the end points of the domalp. That is,

N (XO) _ (Xi—l)’ " (XN) _ (Xi), fori =1,2,..., N. (2)
Yo Vi—1 YN Yi

Vertical segments are mapped to vertical segments scaled by thedadtbe parametes; is called the
‘vertical scaling factor’ of the map; .

Itis easy to show that ifs| < 1, then there is a metrit equivalent to the Euclidean metric such that
wi is a contraction (i.e. there &: 0 < § < 1 such thatl (w; (X), wi (Y)) < §d (X, y); seeBarnsley
1993.

Finally, we considerC([Xo, XN]), || - lloo), Where||¢llcc = maxX|¢(X)], X € [Xo, Xn]} @and the
complete metric subspage s = {g € C([Xo, Xn]): Fi (X0, 9(X0)) = ¥i—1, Fi (XN, 9(Xn)) = i fori =
1,2,..., N}. The Read—-Bajraktarevic operafbj s: F 4 s — F 4 s is defined as follows:

(T4s9)(X) = F (T2, 9T, (x))),  forx e [xi—1,x], i =1,2,...,N,

wheres = (s1,...,sn) . Itis easy to verify thall 4 sg is well defined and thaf 4 s is a contraction

with respect to thep,, metric. According to the Banach fixed-point theorem, there exists a unique
f € F, such thatT,sf = f. If fgis any interpolation function and, = Tg’sfo, whereTQ’S =
TssoTyso---oTys then(fh),eny converges uniformly tof . The graph of the functiorf is the
attractor of the IF§ X, wi1—n} associated with the interpolation points (&sensley 1993. Note that

f interpolates the points off for any selection of the parameters of the polynomialshat satisfies

(2). We will refer to a function of this nature as an FIF. It is readily proved by the above that the FIF is
the unique functionf that satisfies the functional relation

(T4,sH)0) = R (T 7100, FT7H00)). 3
Likewise, f is the unique function whose graghsatisfies the relation
N
G=|Juwi(G). (4)
i=1

Let us consider the case wheog are affine:

Ao (BN (3 OV () (P) foriciz . N (5)
wi _ — . S =1,4,..., .
y Fi(X,Y) a s/ \y di

Here,pi (X) = ¢ x + fj. The FIF that corresponds to the above IFS is called ‘affine’ FIF.
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From @) four linear equations arise, which can always be solvedfpc;, b;, di in terms of the
coordinates of the interpolation points and the vertical scaling fagtorhus, once the contraction
factors for each map has been chosen, the remaining parameters may be easily comptech@@eg
1993.

3. Construction of FISs

Many authors tried to generalize Barnsley’s constructioi®dno produce FISs. More credited are the
works of Massopust, who was the first to consider the problem and also wrote a book on the subject
(seeMassopust199Q 1994, Bouboulis and Dalla (seBoubouliset al, 2006 Bouboulis & Dallg
2007hc; Dalla, 2002, Malysz (seeMalysz 2006, Zhao (seeZhaqg 1996, Wang (seeNang 2006
and Feng (seEeng 2008. We should also mention the constructionXig & Sun (1997 which leads
to compact sets that interpolate data pointskdn However, in most of these attempts the construc-
tion uses either interpolation points, that are restricted to be collinear in the bordets §, 1]%, or
maps with equal vertical scaling factors. A general construction that can be applied to arbitrary data
points onR" was presented recently Bouboulis & Dalla(20073. The main difference of this ap-
proach is that it takes into account not only the values of the interpolation points but also the values
of the borders of the rectangular grid, which are choaeuriori. The method presented here is an
extension.

Consider a data set

A={(x,yj,z,j)el xR;i=01...,N,j=0,1,..., M}

suchthat0= Xg < X3 < --- <Xy =landO0=yy <y1 < --- <ym =1, N,M € N, where
| = [0, 1]%, which contains in totalN + 1) - (M + 1) points. We also define the set

A" ={(x,yj);1=0,1...,N,j=0,1,..., M}.
The points of4’ divide [0, 1]2 into N - M regions
li,j = [Xi—1, Xi] x [yj-1. ¥jl,

fori=2,2...,N,j=12,..., M.
Next, we consideN - M mappings of the form

X
T- j Xs T i X,
Wi [0, 1P xR - lij xR:Wj|y]| = L% Y) _ i, (X, Y) ’ )
z Flix,y.2) \s,jz+pijx.y)

TLixy) = TLi)) aiX + by
R T2,i (y) ajy+bzj)’

for all (x, y) € [0, 1]?, wherep; j is a continuous function on [a]? that satisfies a Blder condition

with

/ hi'
[P (X, YY) — P YIS Lij Il =%,y =9y,
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for some constantsj j > 0,hjj > Oands j € (-1,1),foralli =1,2,...,N,j=12,...,M.
We can use any other norm equivalent to the Euclidean one|| THie norm was chosen to simplify
the notation in the proof of Proposition2 The parameters; j are called vertical scaling factors.
We confine the mapV, j so that it maps the interpolation points that lie on the vertices of]foto
the interpolation points that lie on the vertices ¢f;j. Hence, we obtain the following
relations:

Ti(X0) = Xi—1, Toi(Xn) =X,

T2,j(Yo) =VYj-1, Tzj(yn) =Y
and

Fi,j(X0,Yo) =Z_1j-1, Fi,j(Xo,YN) =Z_1,j,

FiLi(XN.Y0) =Zij—1, Fij(Xn, YM) =270

It is easy to show that there exists a meprc(equivalent with the Euclidean metric) such thigt;
isacontractionforall =1,2,..., N, j =1,2,..., M. To this end, consider the metyig defined on
[0, 1]? as follows:

p1((X.Y). (6 y) = (X = x, ¥ = )Y,
whereh = min{h;, ;,}, and the metric

po((X, ¥, 7). (x,y,2) = pr((X, ¥), (X, ¥) + 017 — 2|

defined on [01]% x R, whered is properly specified (for a complete proof, see, &\ng 2006
Bouboulis & Dallg 20073. Therefore, the IF$[0, 1]° x R, Wij,i =12,...,N,j=12,...,M}
has a unique attractd®. In general,G is a compact subset @3 containing the points of1. The
following proposition gives conditions so th@tis the graph of a continuous functidn As mentioned
above, these conditions involve points that lieadn i, x R, foralli =1,2,...,N,j=1,2,..., M
(Wherealil,i2 is the boundary oii,j). The proof can be found iBouboulis & Dalla(20073 (in the
case of a Lipschitz condition, but it can be easily extended).

ProPOsITION3.1 Leth € C([0, 1]?) be a function that interpolates the pointsfi.e. h(x;, yj) =
zj) such that it satisfies adtder condition. If the IFS defined above satisfies the conditions

Fi.j (X0, ¥, h(X0, ¥)) = h(Xi—1, T2, (), ()
Fi,j (XN, Y, h(xn, ) = hixi, T2, (), (8)
Fij (X, Yo, h(X, Yo)) = h(T1,i (X), Yj-1), 9)
Fi,j (X, ym, h(x, ym)) = h(T1i (%), ¥j), (10)

for all (x,y) € [0, 1]2, i=12...,N,j =12, ..., M,thenits attractoG is the graph of a contin-
uous functionf that interpolates the data points. Moreoveris the unique function that satisfies the
functional relation

fO,y) = Fi (TG y), FT5H0G ), (11)
forall (x,y)e lij,i=12...,N,j=1,2,..., M.
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As in the case of the 1D FIH, is the unique function whose graghsatisfies

N M
c=JUJw,@©) (12)

i=1j=1

The corresponding Read—Bajractarevic operdiph s is defined as

Tans Fans— Fans (Tansg)) = Fij (T, ), 9T 51X y)),
if xeljj,fori =1,...,N,j=1,..., M, whereF 4 p s is the space of all continuous functions on
[0, 1]? that satisfy {—10).
The relations T-10) define a functional system that consists ofM - M equations that associate
Fi,j with h (only at points ofol; j). Considering thaf j(x, Y, z) = §,jz+ pi,j (X, y), we obtain the
system

pi.j (X0, Y) = h(Xi—1, T2,j(¥)) = s5.j - h(Xo, y), (13)
Pi,j (XN, Y) = h(Xi, T2,j(y) —s.j - h(Xn, Y), (14)
Pi,j (X, ym-1) = h(T1,i (X), yj-1) — §,j - h(X, Yo), (15)
Pi,j (X, ym) = h(T1i (X), ¥j) = S.,j - h(X, ym), (16)
forall (x,y) €[0,1]%,i =1,2,...,N,j=1,2,..., M, wheres j are free parameters. In this paper,

we limit our interest only to the case where

P (X, Y) =i j (VX + T2, j ()Y + i, j (Y) + G2i,j (X), (17)
foralli=1,2,...,N,j =12, ..., M. Solving the system of equations, we obtain
. h(xi, T2,j(y)) — h(Xi—1, T2,j (Y)) h(xn, y) —h(xo, y)
ruij(y)= Xy — —S,j — )
N — Xo XN — Xo

qui,j (Y) =h(Xi-1, T2,j(y)) — s,jh(Xo, y) —ri,j (Y)Xo,

h(T1i (%), ¥j) — h(Twij (X), Yj-1) s h(x, ym) — (X, yo)

raij(x)=
21,30 YM — Yo . YM — Yo

_Paig(ym) —rij(¥o) - i (ym) — Gui.j (Y0)
Ym — Yo YM — Yo

>

A2, j (X) =h(Tyi (X), yj—1) — S,jh(X, Yo) = rai,j (Yj—1)X =2 j(X)Yo — dv,i,j ( Yo),

forall x,y € [0,1]% i = 1,2,...,N,j = 1,2,..., M. Therefore, if one constructd + M 1D
interpolants that satisfy adtder condition and interpolate the given data, then any IFS consisting of
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mappings of the above form satisfies the conditions of the propositions. More specifically, we con-
sider the functions); that interpolate the points offi = {(xi, yj,z.j),j = 0,1,..., M}, fori =
0,1,..., N, andthe functions; that interpolate the points (ﬂ‘j ={(X,Yj,%,j),i =0,1,..., N}, for
j =0,1,...,M. Then (L7) gives pj,j(x, y) in terms ofuj(y) andoj(x), fori = 1,...,N, j =
1,..., M. In particular,

Ui (T2, (y)) — ui—1(T2,j () s un(y) — uo(y)

rij(y)= Xy — % S R (18)
qui,j (Y) =Ui—1(T2,j(y)) —S.j - Uo(y) —ra,i,j (Y)Xo, (19)
21 () = (TLi(¥) —0j-1(T1i (X)) . om (X) —vo(X)
YM — Yo YM — Yo
_ i) — i (Y0) - G j (Ym) — Gu.i.j (Yo) (20)
yM — Yo yM — Yo '
G, j (X) =0j—1(T1,i (X)) — §,j - vo(X) —ryi,j (X0) — d,i,j (X0), (21)

fori =21,2,...,N,j =1,2,..., M. Substituting in {7) and taking into account that in our case
Xo = Yo = 0 andxy = ym = 1, we obtain

P, y)=s,jX=D(y—Dz00—5,j(X=1)yZom —Zi—1,j—1+XZ_-1j-1
+YZ_1j-1—XYZ_1j-1—YZ-1j + XYZ_1j — XZ4,j—1+ XYZ j-1
—XYZj +S,jX2ZN,0 = S,jXYZN,0 + S,jXYZN,M — S,jUo(Y) + S, jXUo(Y)
+Ui—1(T2,j (Y)) — XUi—1(T2,j (Y) + XU (T2,j (Y)) — S,jXun(y) — S, jvo(X)

+5,jyoo(X) + 0j—1(Ti (X)) — Yoj—1(T1,i (X)) + Y0 (T1,i (X)) — S,j Yom(X), (22)

foralli =1,2,...,N,j =1,2,..., M. This IFS gives rise to an FIS. Figufeshows the graph of
an FIS, where the 1D interpolants are polygonal lines. (More examples and a more detailed description
using RIFS can be found Bouboulis & Dallg 2007a)

In an attempt to make this construction to depend explicitly on the original interpolation points, one
may consider that the 1D interpolants are affine FIFs constructed as mentioned in Setfamffine
FIFs satisfy a llder condition; se@&lassopus(1994) or Section7 for a more general result). In this
case,u; are the affine FIFs associated with the gkt together with some arbitrary vertical scaling
factorseij, j = 1,...,M, fori = 0,1,..., N. Similarly, vj is the affine FIF associated with the
setjj, together with vertical scaling factoés j, i = 1,..., N, for j =0,1,..., M. We will call the

resulting FIS as ‘generalized-affine FIS'. Fig@&rshows an example of an FIS constructed as mentioned
above.
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300

300 O

Fic. 1. An FIS that interpolates & 5 interpolation points. The values bfatx € ol j,i =1,2,...,5,j =1,2,...,5(i.e. the
10 1D interpolants), are shown in red. In this case, we have selected 10 piecewise linear interpolants.

0 0

FIG. 2. An FIS that interpolates6 5 interpolation points. The values bfatx € olij Ji=12...,5)=12,...,5, are affine
FIFs.
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4. Computation of integrals and moments

To compute the inner product of two FIFs, we need to know the values of their moments. We note that
for the 1D case, these values are already knownEseesley 1986:

3 (D@ fic+ Qm

1- Z| 1 m+l

whereQm = fol XxMQ(x)dx andQ(x) = p oTi_l(X), forx € lj. Hence, the inner product of two FIFs

and f that interpolate the sets = {(Xo, Yo), (X1, Y1), - .., (Xn, Yn)} @and 4 = {(Xo, Yo), (X1, Y1), - ..,
(XN, Yn)} and are associated with the vertical scaling factsrs. . ., sq} and{3,, ..., &}, respectively,
is

1
fm :/0 X™f (x)dx = , (23)

Z| 184S fo fX)pi (X)+Z| 184§ fo f(x) pi (x) +Z| 18 fo pi (X) pi (X)
1->N ass

(f, f) /f(x)f(x)dx

(24)
wherep; andp; are the polynomials of the IFS maps (s¢&rdinet al, 1992).
Using similar methods as iarnsley(1986 andHardinet al. (1992, one can compute the moments
of an FIS defined on [aL]2.

LEMMA 4.1. Let f: [0,1]> — R be a generalized-affine FIS that interpolates the points! ok
{(Xi,yj,z,j)el xR;i=0,1,...,N,j=0,1,..., M}, constructed as above. Then,

fom = / x"y™ f (x, y)dx dy
[0,1]2

N,M WAL Kk ym—I
Z k=11=1 i:l,j:l( )(l )ai+le+lbin d;n S,j fk) + Qnm

n,m k
_ __ kDnm g ’ (25)
1- ZI =1,j= 1aln+ e
whereQnm_f[01]2x y"Q(x, y)ydxdy, Q(X, y) = pi,joT; L(x,y),for(x,y) € lij,i =1,2,..., N,

i=12,.

Proof. Breaking the integral into parts and taking the functional relatidiy, (ve have

fn,m=/ x"y™ £ (x, y)dx dy = Z / x"y™f (x, y)dx dy
[0,1]2

i=1j=1
NM
= D [T 0. TR + i (TE00, Ty ey
i=1,j=1"".]
N,M
-3 ac,/ @ +b)"(Cy + )™ (5.5 F (X, y) + pij (x, y))dx dy.
i=1,j=1

Applying Newton’s binomial expansion formula and solving fary, gives the result. O
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With this method one can compute several other integrals that are needed to compute the inner
product of two FISs. The respective relations are given below without prooft Gety) denote an FIS
defined on [01]? as discussed above. Furthermore,uéy) andv(x) be two FIFs defined on [a],
associated with the IFS&, w&l_)M} and{R, wf_)N} and the interpolation pointd™® = {(y;, z}l)); j =

0,...,M}and4® = {(xi,zi(z));i =0,..., N}, respectively, where

ofYY_[ T2i(y @*Y_( ™™
i (Z)_(UJ’Z+Q](Y)) and z) \Giz+Gx)’

fori=1,...,N,j=1,..., M. Similarly, letd(y) ando(x) be two FIFs defined on [@], associated
with the IFSS(R, &Y, ,} and(R, &\?,,}. Then,

e The integralflo,l]z f (X, y)u(y)dx dy is computed as follows:

N M
Fo yu(yydedy = a,'a,'sa'/ f(x, y)a; (y)dxd
/[05112 (x, y)u(y)dx dy (ZZ 11228 o 100 (ydxdy

i—0 j—=0 [

N M
+ D D aia o /[0 . u(y)pij(x, y)dxdy

i=0j=0

i=0j=0 [ i=0j=0

N M N M
+Zza1,iaz,j/o e BP0 V)X d))/(zz al,iaz,js,jﬂj)-

e The relation for the integrqﬁ“[o’ljz f (X, y)o(x)dx dy is similar to the one above, with(x) in place
of u(y), Gi in place ofgj andg; in place ofg;.

e The integralpnm = f[0,1]2 x"yMu( y)o (x)dx dy is computed recursively as follows:

N,M n,m n m
_ K+1 1+l n—=kpm—=1 _ ~.
Pn,m = - Z Z (k)(| )al,i ag,j bl,i bz’j 0i0jpk,l

N,M
b2 o [ @x by + e ) U8 (0dxdy
i=0,j=0 701

N,M

+ Z oj /[0 1]2(<’=11,i X+ bl’i)n(az’j y+ bz,j)mv(x)qj (y)dx dy
i=0,j=0 »

i=0,j=0 i=0j=0

N,M N M
- ~ 1_v ~
+ > aj/[()?l]z(al,ix+b1,i)”(az,iy+bz,j)”‘qi (00 (y)dx dy)/(ZZfifi+ aytlo) ai),
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wherepg g is given by

N, M
,00,0=< Z AL, joj /[0 u(y)Gi (x)dx dy + Z allaZJo'l /[0 ]ZU(X)C]j(Y)dXdy
12 1

i=1j=1 i=1j=1

N,M
+ Z al.az,/[lzdi(x)qj(y)dxdy>/<1— > al,iaz,j5i01)-

i=1,j=1 i=1,j=1

e Theintegraknm = f[o,1]2 x"yM (x)d (x)dx dy is computed recursively as follows:
N n-1 N
~ 2 Kk —k ~ 2
nm =1 (Z Z 0i i ( )aljlbg,i 7k,0 + g{ai /[o,l]z(al’i X + b1) " (x)Gi (x)dx dy

N
+ Z /[0 " Gi (@i X + by,i)"Gi (x)6 (x)dx dy
i=1 s

N N
+2 [@oxcrbuamdoday ) /(1 S adalt).
 Joar - |

i=1
o Asimilar relation holds for the integraf, ,, = f[o,1]2 x"yMu(y)a(y)dx dy.

The inner product of two FISs is given in the following proposition.

PrROPOSITION4.1 Consider two sets of interpolation points

A :{(Xl’yj9zl,])3i :oil""’ N’J :o’l""5 M}’

A={(%,Y}.2.,),i=0,1...,N,j=0,1,..., M}
suchthatO= Xxg < X1 < -+ < XN = 1ar]d0= Yo < Y1 < --- <ym = L. Letu;, i be the 1D
interpolants associated with the setsand 4; = {(xi, ¥j, z.j), j = 0,1,..., M}, respectively. Simi-
larly, letoj, 0 be the interpolants associated with the siejtsandjj ={(X,Yj,z,),i=0,1,...,N}L
Consider the FIS$, f that interpolates and 4 and are associated with the bordersv; andd;, o for
i=0,...,N,j=0,..., M, with vertical scaling factors j and§ j, respectively, foif = 1,..., N,
j =1,..., M. Then the inner product of and f is given by

1
N M a ’

1-201 2 m1s, 8. ac

/ F(x, y) f(x, y)dy dx =
[0,1]2

(ZZS j (/ - fox, yypij(x, y)dde)aicj

i=1j=1
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N M
+> D5 (/[ ; F O )P (%, y)dde)aicj

i=1j=1 0.1

N M
+ZZ(/[0,112 pi,j(x,y)ﬁi,j(x,y)dde)acj ,

i=1j=1
wherep; j andfj,j are given by 22) in each case.

Putting together Propositiof.1 and relation £2), it is evident that in order to compute the inner
product f[o 12 f(x,y) f(x, y)dx dy we need to compute several integrals of the form

/ X"y, (y)o; ()dxdy, / X"y (y)ui( y)dxdy, / X"ui (y) £ (x, y)dxdy,
2 [0,1]2 [0,1]2

>

/ x"y™u; (T2, (y)oj (x)dxdy, / XMy™u; (T2, (y)uir (y)dxdy,
[0,12 (0,112

/[0 12 Xnui (TZ,I ( Y)) f (X, y)dX dy

(and likewise foroj andoj o Ty k) and the moments dfi, vj, Ui o Toy, vj o Ty, for all possible
combinations of,i’, j, j’, k,1 andn, m = 0, 1. The first group of integrals can be evaluated using the
relations presented above in this section. For the second group, we need to obser@ihéy)) and

vj (T k(X)) are also affine FIFs, for all, j (see Propositio.1in Section5), and then use the same
relations. After considerable algebra (which can be done by Mathematica or Maple), we take the inner
product as a linear combination of the produgts- 2, fori,k =0,1,..., N, j,| =0,1,..., M. The
coefficients ofz j - 2 will be polynomials of the vertical scaling factoss;, 5, ,i,k =0,1,..., N,
i,1=0,1,..., M.

5. Dilation properties of FIFs

We have already mentioned that affine FIFs satisfy certain dilation properties. The aim of this section
is to prove that similar relations are true for the generalized-affine FISs. In the following, we will limit
our interest to FISs that are constructed taking into account that the 1D interpolants are affine FIFs, as
mentioned in the last lines of Secti@ In addition, we will assume that the vertical scaling factors
used for the construction of the affine FIFs and the construction of the FIS are eguakts j = s,
i=L...,Nj=L....,M;g,j=si=0...,Nj=21...,Mg,;=s1i=1..,N,

j =0,..., M).Inthe rest of the paper, when we are refereing to a generalized-affine FIS, we will mean
an FIS constructed in this manner (unless it is explicitly stated otherwise).

5.1 Dilation properties of affine FIFs

For the case of the affine FIF, it has been noticed that certain dilation properties hold. In particular, if we
restrict an FIF that interpolaté points (see Sectiob.2) on the interval i—1, X; ], then we get another

FIF. This property is described in the following proposition. Its proof makes use of the self-affiniteness
of the graph off (seeHardinet al, 1992.
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ProPOSITIONS.1 Let f be an affine FIF associated with the set of interpolation paihts {(Xi, Vi),
i = 0,1,..., N} and the vertical scaling facta (see Sectior.?). Let w1, ..., wn be the affine
mappings that form the respective IFS, then forknry 1, ..., N,

(i) The restriction off on [xk—1, Xk] is also an affine FIF that is associated with the pof(T&(X;),
Fc(Xi, ¥i)),i = 0,1,..., N} and the vertical scaling facta: The associated IFS contains the
affine mappingsox o wi o w i =1,..., N.

(i) The functionf (Tk(x)) is also an affine FIF, associated with the poiiis, wk (X)), =0, ..., N}
and the vertical scaling functic The associated IFS contains the mappings

()= (o) snco om0+ mcron)
Wi = ,
"y SY = sp(X) +sp (X) + pe(Ti (x))

fori =1,..., N.
Proof.

1. LetG be the graph off, thenwy(G) is the graph of the restriction df on [xk—1, Xk]. The result
now follows from the fact that

N N

G = Jwi(G) = wk(G) = | J wk o wi 0wt (wk(G)).
i=1 i=1

2. The graph off (Tk(x)) is wk o wk(G), wherewy is given by

Wk = .
y y

Similarly to the first part, we easily obtain

N
wk o wk(G) = U Wk O Wk O Wj O owk_luv)k(uv)k o wk(G)).
i=1

The result follows after some algebra. O
The following result is also found inlardinet al. (1992 and will be used later.

PROPOSITIONS.2 LetP = {xj,i = 0,1,...,N},0=Xxp < X1 < --- < XN = 1, be a partition of
[0, 1] and|s| < 1. The spac&p s of all affine FIFs that interpolate points of the fout= {(x;, yi), i =
0,1,..., N} and are associated with vertical scaling fact@ a linear space with dimensidw + 1.

5.2 Dilation properties of FISs

Similar results hold for the generalized-affine FISs.

PROPOSITIONS.3 Let the set of point® = {(x,yj),i = 0,...,N,j = 0,1,..., M}, such that
O0=Xp <X <--<xXxy=1L1and0=yy < y1 < --- < yu = 1, that define a partition of
[0,1])% and|s| < 1. The sefl'p s of the generalized-affine FIS that interpolate a set of points of the
form 4 = {(xi,yj,z.,j),i =0,1,...,N,j=0,1,..., M} and are associated with the vertical scaling

factorsis a linear space with dimensi@i + 1) - (M + 1).
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Proof. Let f1, f; € Fp s, two generalized-affine FISs with grap® and G, that correspond to
interpolation points4, and 42, respectively, and1, 12 € R. Let V\/f}f andV\/i(,Zj) be the mappings of
the associated IFSs (se®)andG be the graph of the functiofi = 11 - f1 + 45 - fo. If u-(l) (1) and
-(2) (2) are the corresponding affine FIFs used i |n the constructioi ahd f,, then Proposrt|0r5 2
NP u ) anddj = 21 - 0(1) +A2- 1)(2) are affine FIFs

(fori =0,...,N,j =0,..., M). Itis easy to prove that the mappm‘r_z)t.;,J defined by

ensures that the 1D interpolarits= 4 - u;

X Tyi (%)
Wiyl = To,i (YY) ,
z S-z+ fij(X,y)

with fi j (X, y) = 41 - P J)(x y)+ 42 B )(x Y), WherepI J and p(z) are the corresponding functions

of W(l) andV\ll(zj), fori = 1,...,N, j = 1,..., M, satisfy the relatiorG = Ui:lUj:J_VVi,j(G).
Furthermore we can easily verify thar ; satisfies 22), with (;, 9; in place ofuj, vj andz; =
A1 z(l) + A2 - z(zj) in place ofz j, fori =1,...,N, j =1,..., M. A straightforward choice for the
base of this linear space are ttié + 1) - (M + 1) functions obtarned by putting a ‘1’ on each of the

(N + 1) - (M + 1) interpolation points and filling the rest with zeros. O

PROPOSITIONS.4 Letd = {(Xi, yj,Z,j);i =0,...,N,j=0,..., M} be aset ofinterpolation points
and|s| < 1. Let f be the generalized-affine FIS that interpolates the points.afhen the restriction
of f onlk = [X-1, %] x [yi-1, ] andg = f|;, (for fixedk, I) is also a generalized-affine FIS
interpolating the set of points

Ak = {(Te(X), T21(yj), Fi (X, ¥y, 2,j)):i =0,...,N,j=0,..., M}.

Proof. We split the proof into two parts. In the first, we will prove that the affine RiFsvj, i =
0,...,N,j=0,..., M, are mapped (throug ) to affine FIFs. Subsequently, we will deduce that
the graph ofj satisfies a relation such ak?), where the mappings are similar @2§.

For the first part, let;; be one of the affine FIFs that interpolate the pointdot= {(Xi, ¥j, z.j); | =
0,..., M}andlett be afunction defined oryg1, y] such thatii (y) = Fici (xi, T5 (), Ui (T, 1 (¥))
foralli = 0,..., N. Substitutingx with x; in (22), we can easily see that is expressed as a linear
combination of affine FIFs (plus a constant function which is an affine FIF).

For the final part, we observe that

N M
Wi (G) = | [ Wkt © Wi j o Wi (Wk 1 (G)), (26)
i=1j=1

whereG is the graph off andW (G) the graph ofy. Considering that
X T ()
Wt |y = oY) :
z £ = i (T 00, T (y))
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it takes a few lines of algebra to see that the mapp\'ivg;s =W oW, jo Wk_,ll have the form

X Tiko Toi o T (%)
WiilY|=]|TaioTyj oTz]l(y) )
z 5'Z+ﬁi,j(XaY)

where
B 6 Y) = =S Pt (T (0, T )+ P (T 00, T () + it (Tri o T (), T2, 0 To M (y)),

fori =1,...,N,j=1,..., M. Itis readily proved tha\‘/A\/i,j has the form§) and fj,j has the form

(17) for alli, j. Therefore, taking into account the first part of the proof and the fact the; glisatisfy
(26), we deduce that the functianis a generalized-affine FIS. O

6. Multiresolution analysis obtained from FISs

In the following, we give a definition of multiresolution analysis basedNeadic dilates (wher&l > 2),
instead of dyadic ones which are more widely used. A ‘multiresolution analysis of multipiicdfy
L>(R?) is a nested sequence of closed linear subspag@sn L (R?) satisfying the following:

(A) f eV, ifandonlyif f(N~K.) e Vo.
(B) Nestedness/y C Vi.

- _ 2
(C) Density UkeZ Vi = La(R?).
(D) SeparatlonﬂkEZ Vic = {0).

(E) Stable shifts. There arefunctions¢?, ¢2, ..., ¢" such that the collection of integer translates
{6 =" — i,-—Jj)/a=1,...,1,i, | € Z} forms a Riesz basis d&fy.

An immediate consequence of the above relations is that the set
B =¢" (N —i.NK —jia=1...ri ez}

is a Riesz basis ofk. The functionsgl, ..., ¢" are called scaling functions and are said to gener-
ate the multiresolution analysis. The vector functibn= (¢1,...,4")" is called scaling vector. If

there is a set of compactly supported scaling functions whose integer translates form an orthogonal
basis ofVg, then we call(\V) ‘orthogonal’ multiresolution analysis. We note that since the number of
the scaling functions is finiteyy is a ‘finitely generated shift-invariant’ (FSI) space. Another immedi-

ate consequence of the above relations is ¢haatisfies a ‘matrix-vector refinement equation’ of the
form

®(x,y) = > Cij®(Nx—i,Ny—j), (27)
i,jeZ

for some sequence ofx r matricesC; j, called ‘scaling coefficients’.

There are several results regarding the conditions that the funetigns. , " need to satisfy, so
that they generate a multiresolution analysis. Conditions for the density property (C) were given by de
Boor, DeVore and Ron and can be founddim Booret al. (1993 for the case where = 1, but can be
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easily extended (see ald@a & Shen1994). Their result can be stated as follows (foe= 1): If F(¢)
(i.e. the Fourier transform af) is non-zero almost everywhere in some neighbourhood of the origin,
then the density property holds. Note that in the case whéigs compact support, this condition is true.
For the separation property, we have the general result giveimb$ Shen(1994): Any FSI subspace
of L»(RY) satisfies (D).

For the purpose of our construction, we fikands and defineVy to be the space consisting of
functionsf e L»(R?), whose restriction taf, a+1]x [, f+1] is a generalized-affine FIS interpolating
sets of points of the form

A={(a+i/N,f+j/N,z j);i, j=0,..., N},

forall a, # € N. The correspondingN + 1)? scaling functions and their translates must form a basis of
Vo. One such base can be obtained by selegtingvherex =1 - (N + 1) + k+ 1, as the FIS associated
with the set of points

Ak = {1 /N, j/N,z j): z) = 6 kdj,1},

forallk,1 =0,..., N.Itis easy to verify that the corresponding scaling veaawrill satisfy a refine-
ment equation such a&%).

ProOPOSITIONG.1 Consider the generalized-affine Flﬁs. .., ¢", defined as above (where= (N +
1)2). Let{X, WK, i, j =1,..., N} be the IFS related tg*, forx = 1,...,r (whereX = [0, 12 xR
andW; = (Toi, T2 j, Fi‘fj)T, see also SectioB). Then the vectord = (41, ..., ¢")T satisfies the
refinement equation

N—-1N-1

(X, y)= > > Cij-&(Nx—i,Ny—j), (28)

i=0 j=0

whereC; j arer x r matrices whose elements are given by
Ci,j(r, ) = F(k/N,I/N, ),

with k, | the unique integers satisfyilg=1-(N+ 1) + k+ 1 (i.,e.l = (1 — 1)div(N + 1), k =
(A—=1)mod(N + 1)), foralli,j =0,...,N—=21,x,A=1,...,r).

Proof. Letx be fixed. By Propositios.4, we know that the restriction @f* in each of the set§ j =

[i/N, (+1)/N]x[j/N,(j+1D/N]i,j=1,...,N,isalsoageneralized-affine FIS. Thys]; ; can
be expressed as a linear combinatio@dfN - —i, N-—j), ..., #" (N - —i, N-—j), with its coefficient
values on the vertices of the corresponding grid

¢* (X, y) = D FF (/NN 7)) - ¢* (Nx—i, Ny — ),
A=1

for all (x,y) € I j, wherel = (1 — 1)div(N + 1) andk = (4 — 1) mod (N + 1). The result follows
immediately. O

Using the Gram-Schmidt orthogonalization process, we may obtain an orthonormal bége of
namelyg?, ..., ¢". We defineVi as the space produced By(NK., N¥.), ..., ¢"(NX., NK.) and their
translates, i.e.

Vic = sparf¢*(NK - —i, Nk. —j)i,jeZ,k=1,...,r}.

The following is true.
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PROPOSITION6.2 The space¥, k € Z, generate a multiresolution analysislof(R?).

Proof. Conditions (A) and (B) clearly hold due to the construction (&5 énd Propositio.4). Since
Vo is an FSI space, conditions (C) and (D) also hold as mentioned above. The last condition follows
from the orthogonality of?, ..., ¢". O
As is usually the case, we defilté as the orthogonal complement\gf into Vi1, i.e. Vk ® Wk =
Vi+1- Inthis case, all th&\i's are scaled versions 8 (i.e. f € Wk & f(N—k) e Wp), Wk L W, for
k # K/, andL2(R?) = @z Wk. In addition, there exist functiong?, ..., y" (r' = (N2 = 1)(N + 1)2
in our case) orthogonal t¢’s and to each other so that their integer translates form a Riesz basis of
Wo. The functionsy?, ..., " are called multi-wavelets. The wavelet vector= (2, ..., ") will
satisfy a relation of the form

N—1N-1
Y(x,y)= D D Dij ®(Nx—i,Ny—J), (29)
i=0 j=0
whereD; j arer x r matrices, foii, ] =0,..., N — 1. The wavelet coefficient®; ; can be computed

by solving the linear system
(W x, ¥, ¢' (x, y)) =0,

fork =1,...,r,1 =1,...,r. LetCj j(l, 1) denote the element of th@ ; matrix positioned akth
line, Ath column andD; j (k, x) denote the element d; j positioned akth line, xth column. Then the
above linear system can be reformulated as

N-1N-1 r’ N-1N-1r
<Z > D Dijk ) g"(Nx—i,Ny—), > D" > Cirj(l,4)-¢"(Nx—i',Ny - i’)> =0,

i=0 j=0x=1 i’=0 j’=01=1
or equivalently

r' r N-=-1N-1

D3> G 0.2 (@ (Nx—i,Ny— ). ¢*(Nx—i,Ny— )} - Dy j(k,x) =0,  (30)

k=1,=1i=0 j=0

forallk=1,...,r',1 =1,...,r. We can then apply the Gram—Schmidt orthogonalization procedure
to obtain an orthonormal basis. Another more elegant approach is to extend the polyphase matrix in
such a way that the extended matrix is paraunitary (see,S¢rgng & Strela1995 Lawton et al,

1996 Vaidyanathan1993 Keinert 2004). Either way, the resulting multi-wavelets are not unique. At
this point we should note that the multi-wavelets are not continuous functions. They will have possible
discontinuities at the points [@] x {i /N} and{i /N} x [0, 1], foralli =0, ..., N.

REMARK 6.1. Itis easy to prove that the scaling vector has accuracy 2 (i.e. any polynomial up to order 1
belongs toVvp). This means that the wavelet functions will have two vanishing moments.

For the implementation of the discrete multi-wavelet transform, we must provide a suitable prefilter-
ing (preprocessing) technique. Prefiltering is the process of converting the equally spaced samples of a
given signals(x, y) € Vg to the vector coefficient§ j appearing in the multi-scaling expansion of the
signal, i.e.

s, y) =D Sl - dx—i,y—]).
]
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For scalar wavelets, the preprocessing and postprocessing steps are often omitted and the expansion
coefficients are equated with the point samples. This is often called as a ‘wavelet crimirgses &
Nguyen 1996. For the multi-wavelets, however, preprocessing and postprocessing steps are necessary.
We will use a short of interpolating prefilteHardin et al,, 1992 Xia et al, 1998. We assume that
the signal has been sampled at the poimig, yj,), Xixk =1 + (K/N), yj; = j + (/N), fork,| =
0,..., N — 1. Then, thecth element of the vectds j is given by

S,j(x) = s(Xik Yj1),

wherek, | such thate =1(N + 1) + (k+ 1).

6.1 Anexample

Consider the case wheke=2, i.e. we have nine scaling functions. The inner product of two generalized-
affine FIFsf and f each one of them interpolating the data sets

i o . i oL o
4= [(Es Eazl,])yhj = O) 152] and4 = [(E) E)ZI,])JIDJ =0a 192] 5
respectively, will be given as a linear combination of the prodecfs 2 j,i,j =0, ..., 2, where the
coefficients are rational polynomials sfwith the common denominator
1152—1+s)*(1 +s)°.

Although it is possible to give the exact formula using the techniques in Settiva chose to omit it
since it is very large and does not provide any additional information (the computation was implemented

in Mathematica). The scaling coefficier@@gj, i, j = 0, 1, are given below:
1 & o0 & &= 0 0 o0 O\
0 i+4s 1 0 & L= o0 o0 o0
0 -3 0 0 0 0 0 0 0
coo |© O O i+s 3 o0 1 = o0 ’
’ 0 0 o0 o0 X lis o0 1+s1
0o 0o 0 -5 o0 o 0 0 O
o o o o -% -5 0 o0 o0
o o o0 o % o 0 0 O
0 -5 0 0 0 0o 0 0 Qg
1 2 0 L= 2= 0 0 0 o0
0 2 1 0o L& L= 0 0 o
o 0 0 0 -*¥ o0 0 -5 0
Cio=|0 0 0 3+s HE o 1 = of,
0 0 0 0 ¥ 34s 0 = 1
0o 0 0 -3 -* o0 0 0 O
0 0 0 -5 -% o0 0 0 O
0 0 0 0 o -3 0 0 O
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o 0 0 -5 0 0 0 O q
o o o 0o -¥ -5 0 o0 o0
o 0 0 0 £ 0 0O O O
1- 1-2 1-
1 52 o0& 2= 0 0 0 o0
Coi=|0 3+4s 1 o0 HE L= o o of,
0o -5 0 0 -* 0 0 0 O
1- 1- 1-
0 0 o0 X L= o 1 L o0
1- 1- 1
0 0 o0 o0 ¥ s o lys
o 0 0 0O 0 0 0 -5 0O
0 0o 0o 0o 3 0 0 0 0
3
0 o -5 -¥ 0 0 0 O
0o 0 0 0O 0 -5 0 0 O
3
0o -5 0 0o -¥ 0 0 0 o0
Cii=|1 B2 o 4= H& o o0 o0 o0f.
1- 1- 142
0 3 1 o L& 4= o0 o0 o0
0o 0 0 0O 0 0 O0-50
1- 1- 142
0 0 o0 L= L= o 1 4= ¢
1— 1- 1-
0 0 0 0 &8 L= o 1= g

We can find the corresponding wavelets using Mathematica or Maple to extend the polyphase ma-
trix or solve the linear system and orthonormalize as mentioned earlier. It is possible to give an exact
formula of one set of corresponding wavelets in terms,dfut since it is very long we rather give an

approximation for the case= % (see Tabled and?2).
Figure3 shows the scaling functions, while Figgand5 show the corresponding orthonormal multi-

wavelets.

7. Generalization of the construction toLz(Rd)

In this section, we generalize the construction using FIFs defined,dj’[ad > 3. The key ideas are
the same as before. However, we need some results regardidfgler property of a general class of
FIFs in order to make the construction valid.

7.1 FIFs on rectangular lattices of0, 1]
Consider a set of interpolation points of the form
4= {(Xl,il,Xz,iz,--.,Xd,id,Zil,iz ,,,,, i) €[0,1] x R;ij =0,..., N, I =1, 2,---,d}

suchthatG=x0 <X,1<--- <x,n =1, N eN,forl =1,...,d, which contains in tota(N1 + 1) -
(N2+21)---(Ng+21) = H|d:1(NI + 1) points. To simplify the notation, we set (i1, 12, ...,in) € Ao,
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-0 =N oW

08

(a) ¢! (b) ¢?

F|1(;. 3. 2Three of the scaling functions of the example presented in Se&tloithe rest of the scaling functions are rotations of
¢~ orp=.

where
Ao=1{0,1,..., N1} x--- x{0,1,..., Ng},
Ar1={1,2,...,N1} x---x{1,2,..., Ng},
thus we may rewrited as follows: 4 = {(xi,z) € | x R,i € Ag}. Let{ey, ;| = 1,...,d} be the

standard basis d&9. Furthermore, for anx € RY, x = (X, . .., X4), We use the notations projx and
proj; x as follows:

proj_;X = (X1, ..., Xi—1, Xj41, - - ., Xd) € Rd_l,
projlx = (X1, e, X521, 0, Xi41s s Xd) € Rd.
The interpolation points divide [@]¢ into H|d:1 N regions:
li = [X1ii—1, X1iy | X [X2iip—1, X2i5] X -+ X [Xd,ig=1> Xd,iq] »

foralli € A1. Next we consideHld:1 N mappings of the form

“ () (o)
Wi [0, 18 xR — I} x R: W, = , (31)
z SZ+ pi(X)
T, (X1)
T2, (X2)
with  Tj(X) = ] ,
Td,iq (Xd)

forall x = (x4, ..., Xq) € [0, 1]9, wherep; is a continuous function that satisfies altier condition of
the form

Ipi(¥) — PV < Li - Ix =y,
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(m) 13 (n) 4 (0) %'

FIG. 4. The orthonormal multi-wavelets of examfdlé for s = 1/2. Part A.
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(3) 9*° (k) 9% (1) $*

FIG. 5. The orthonormal multi-wavelets of examfld for s = 1/2. Part B.

for some constants; > 0, h; > O, for alli € Aj;. Again, we confine the mayy; so that it maps the in-
terpolation points with coordinates on the vertices ofl[d to the interpolation points with coordinates
on the vertices ofj, i.e.

T,i(0) =X -1, T,i)=x
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and

d
Pi (1 - Zéfled,l) = Zi—zgzlé)ued,/i -S- ZN_ZE:l N;d1€d.1° (32)
J=1
forallé = (01, ...,dq) € {0, 1}9, whereN = (Ny, ..., Ng) andl = (1,..., 1).

As in Sectior3, we can define a metric (equivalent to Euclidean metric) suchthata contraction,
i € A1. Thus, the resulting IFERIt1, Wi; i € A1} has a unique fixed point. The following proposition
is a special case of a result foundBouboulis & Dalla(20073.

ProOPOSITION7.1 Leth be a continuous function that satisfies aléter property and interpolates the
points of 4. If the above-mentioned IFS satisfies the conditions

pi(Proj;x + €d,1) = h (proj; Ti(x) + X1.i,€d.1) — S - h(proj;x + €q,1), (33)
pi (proj;x) = h (proj; Ti(X) + X1,i,—1€d,2) — § - h(proj; ), (34)
forall x € [0,1]9,i € A1, 2 =1, ..., d (wheres are free parameters), then its attrad®ois the graph

of a continuous functiorf that also interpolates the data points.

We must point out that, as was the case whes 2 in Section3, we are interested only with the
values ofh at the borders of;. For the following, we assume that il has the form

d d
PO = D" ri(Proj_x) - i + > ai(proj_x),
I=1 I=1
for all i € Aj, that the vertical scaling factors are equalst¢s = s, for alli € Aj) and that the
interpolation points are equidistant, i£.has the form
A ={(i1/N,i2/N,...,id/N,z ig);i1=0,...,N, I =1,....d}.
Solving the system33-34), we obtain the following relations:

r1,i(proj_;x) = h (proj T(x) + xi.i;eq,1) — h (proj T(X) + X i —1€d,1)
—s (h(proj x + eq,)) — h(projx))

-1
= > (ki (Proj_i ;X + &-11) — I (Proj_y | X+)) - X
k=1
-1
- Z(Qk,i(PTOJ'_kJX + €d4-1,1) — Gk,i (Proj_y | X+)) (35)
k=1
and
a,i (proj_;x) = h(proj Ti(x)) — s h(projx) (36)
= -1
= > ki (Proj_y 1 X) - Xk — ri(Proj_ )% j—1 — ki (Proj_y  x).
k=1 k=1

forallx = (X1,...,Xq),i € A1,1 =1,...,d.
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As mentioned above, we will show that such an FIF satisfie®laléd property. We will use this
result to make a valid construction of FIFs that generate a multiresolution analysis. The search for the
Holder exponents of FIFs is an issue addressed by many authors in the past. As an example, we mention
the extensive work oBedford (1989, where (among others) the relation between tlkiéder exponent
and the box-counting dimension of the affine FIF (with one variable) is explored, and the wiorkaf
(19949). Results for the Elder properties of a class of FIS can be founthiang(2006. The proposition
given below is a general result concerning FIFs defined om]f0 We use the| - |1 norm to simplify
the notation. Before we go on with the proof, we briefly describe some properties from the code spaces
(or addresses) associated with the IFS (the interested reader can find more on the stlgjecilay

1993. A ‘path’ ji,jo, .- sin, ..., Wherej, = (ji;, j2.4, .-, Jd,2), defines a sequence of mappings
Wi, ..., W, ...thatare applied to an arbitrary poix®, z©) in the following way:
=T o), 20 =204 sp,6) 4, (T, (T,6))

KO =Ty 0Ty o Ty ). 20 = 5720 4 7, (0) + s, (Tox®) + p, (T 0 Ty x®))

At the nth iteration, we take
X =T, 0T, 000 T, (xO),

n—-1
Z(n) = SnZ(O) + Sn_lpjn(x(O)) + Zsr_l er (TjH—l © Tjr+2 OO TJn(X(O))) ’
r=1
This sequence converges to the pamtf (x)), X = (X1, ..., Xd), wherex; = 0.ji 1ji.2..., jin, ... IS

a N-adic representation of, | = 1, ..., d, for any starting pointx©, z©?) < [0, 1] x R.

PrROPOSITION7.2 (Holder property of an FIF)
Let f: [0, 1]9 — R be an FIF that interpolates the data set

A ={(i2/N,iz/N,...,id/N,z, ig);i1=0,...,N, I =1,....d}.
Let {R9+1 Wi;i e A1} be the associated IFS as defined above. We assumejthatisfies a Klder
property of the form pi(X) — pi(y)| < Lj - |Ix — y||2‘, whereL;, h; > Oforalli € Aq1. Then, thereis a
Holder exponent < hg < h = min{h;; i € A1} and a positive numbdrg such thaf f (x) — f(y)| <
Lo - [Ix — ylIf°, for all x, y e [0, 1]°.

Proof. We defineh = min{h;,i € A1}, L = maxL;,i € A1} andM = maxX]|| pillcc, 1 € A1}. Now,

considerx, y € [0, 1]9 such that = (X1, X2, . .., Xd4), Y = (Y1, Y2, . . ., Yd), where
X1 =0.jr1j1,2- -5 jLn, .- y1=0.j11J12.--» J1n, ...
X2 =0.j2,1j22..-5 j2.n, - - y2=0.J21]22..., J2n, ...

Xd = 0.jd,1jd,2- - Jdns - - Yd = 0.jd,1jd,2- -5 Jd.n, - -
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are theN-adic representations @&f y. If one of them is finite, then we fill the empty places with zeros.
Thus, after applying the pathis j. . .., jp, ... andjy, jo, ..., jn. . . . to any starting pointx©, z2©) e
[0, 1]9 x R, we have

20 = 201 <1512 = 20) + 18" [y, @) - B (X))
n—1
+ 2 Is|’ )pjr (Tjr+1 0T, 00T, ))) -p (-I—jr+1 o owo -I—fn(x( )))‘ .
r=1
(37)

Evidently, there is an integer numbler> 1 such thatoir < [|1x — yll1 < . We divide [q 1]¢ into
hypercubes of side-lengthy WK.

Case | There is a hypercube of side-lengtiN¥ that contains bott andy. This means that we can
found N-adic representations a&f y, with the same firsk digits. Assuming that this is the case B/}
and taking into account thedttler property ofp; and the relationp;(x)| < M, foralli € Aj, we take

20 = 20 < J5i" 2 = 201+ 15" [y, (@) = py, (@)

3R, (10 o 0O = B, (Toe0 Ty 0T, oo T, 00)

Jk+1
r=1

k
+ > |s|f—1’p,-r (Tjr+l oo Tjn(x@))) -p (T.A °"'0Tin(x(0)))‘

Jr+1
r=k+1

<129 = 20 4 |s|"12Mm +Z|s|r lL( ) Z IsI"~*2Mm.
r=1 r=k+1

Taking limits asn — oo, we obtain

00— tor< L3 s (k) vzt
s = 4 Nk 1- s’

Since|s| < 1, N > 1, we can chooshy < h such thats| < (1/N) < 1. Thus, if we define
M; = |s|NMo < 1, after some algebra the above relation becomes

k h h h
_ 1 \" 2M.M,. Nho 1 \M
ITo)—fyI<L (Z Mz l)' (Nk—l) + 1—2|s| '(Nk+l)

r=1

2M - My - Nho 1 \Mo
<L Mgz N2 )
( R 1—|s| ) (Nk+1) ’

whereMz = > "2 s M. Since<ir

i < IIX—yll1 < 1, we have finally that

100 — FO)I < Ma-[Ix -y,
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where

2M - My - NMo
M4:(|_.|\/|3.N2ho+—2)

1—|s|
Sincehg andL do not depend ok, we have the result.

Case It There is not a hypercube of side-lengthNK that contains botb andy. Then there are two
adjacent hypercubes of side-lengtiNK such that the first containsand the second contaigsLet
be a common point of the two hypercubes (placed on their border), then we have

00— fWMI<TT) = I+ — Tyl

oh 2ih
< Mallx = X[1;° + Mally — X[|;°

1\M
<o ()

h
<2M4Nh0( 1 ) ’

Nk+1

< 2MaN" - [1x — y|I1°.
This completes the proof. O
REMARK 7.1.

e ltis evident that the Blder exponenitg < h computed above, such that < (1/N)™ < 1, depends
on |s|. If |s| is relatively close to 1, thehg will tend to be close to 0. On the other hand|sf is
relatively small (i.eJs| < (1/N)") thenhg will be equal toh. This agrees with the results found in
Bedford(1989 for the affine 1D FIFs.

e Theresult holds even if we consider different vertical scaling factors assigned to eadch

7.2 Multiresolution analysis of b(R%)

Now we proceed to the point of making the construction of FIFs to depend only on the interpolation
points (and of the free parametg). This is done by induction. We demonstrated in Secfioine
procedure fod = 2. The resulting FIFs were called generalized-affine FISs. Now we assume that the
construction of generalized affine FIFs is valid onJ{f~ and we construct a generalized-affine FIF

on [0, 1]¢. To this end, consider the data sets

1 i1 i jd .
Al’h = [(N,...,T,T,...,N,Zh ’’’’’ jd);JkZO,..., N,k=1,...,d,k;£|],
forall jj =0,...,N,I =1,...,d. Letoj: [0, 1]d—l — R, be the generalized-affine FIF associated
with 4 j ands, forall jj =0,...,N,l =1,...,d. Using relations§2), (33) and @34), we can easily
prove thatp; will be given in terms ofp j forall j = 0,...,N,I = 1,...,d and for alli € A;.

In fact, p; will be given as a linear combination of j, some polynomials and j multiplied with
combinations of the coordinates xf{see, e.g.42)). By induction, Propositio7.2 ensures thap; will
satisfy a Hdlder property for ali € A; making this construction valid. In addition, we can easily see
that certain properties such as the ones presented in Séaisn hold ford > 2.
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Finally, consider théN + 1)9 generalized-affine FIFs each one interpolating the set of points

i i -
Ay, kg = I(Nl’ e Nd’ Zil,...,id) 3 Z,..ke = L, 7,1y =0, for all other mdme% ,
for all (ki, ..., kq) € Ag. Using arguments similar to those in Sectigh$ and6, we can prove that
¢, ..., ¢", wherer = (N + 1)4, generate a multiresolution analysislof(R%). We can also compute

the (N + 1)9 . (N9 — 1) associated orthogonal wavelets. To avoid repeating the same arguments over
and over, we omit the proofs.

8. Conclusions and future research

The new construction of FIFs on,[@]¢ presented in Sectiorsand7 generalizes the concept of affine

FIFs defined on [01]. We have shown that they can be effectively used for the generation of multireso-
lution analyses of »(RY). The associated multi-wavelets are orthonormal, but discontinuous. The free
parametes may be used to involve certain constrains in the analyses. It is motivating to see if we can
use the aforementioned construction to generate continuous multi-wavelets somewhere in the lines of
Donovarnet al. (1996.

Funding
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