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We present a new construction of fractal interpolation surfaces defined on arbitrary rectangular lattices.
We use this construction to form finite sets of fractal interpolation functions (FIFs) that generate mul-
tiresolution analyses ofL2(R

2) of multiplicity r . These multiresolution analyses are based on the dilation
properties of the construction. The associated multi-wavelets are orthogonal and discontinuous functions.
We give concrete examples to illustrate the method and generalize it to form multiresolution analyses of
L2(R

d), d > 2. To this end, we prove some results concerning the Hölder exponent of FIFs defined on
[0, 1]d.

Keywords: fractal interpolation functions; fractal interpolation surfaces; fractals; moments; Hölder;
multi-wavelets.

1. Introduction

Fractal interpolation, as introduced byBarnsley(1986) (see alsoBarnsleyet al., 1989), is an alter-
native to traditional interpolation techniques, which gives a broader set of interpolants. In fact, many
traditional interpolation techniques (splines, hermite polynomials, etc.) are included as special cases.
Its main differences consist (a) in the definition of a functional relation (see (11)) that implies a self-
similarity in small scales, (b) in the constructive way (through iterations), that it is used to compute the
interpolant, instead of the descriptive one (usually a formula) provided by the classical methods and
(c) in the usage of some parameters, which are usually called vertical scaling factors, that are strongly
related with the fractal dimension of the interpolant. It was these properties (and especially the second
one) that led Geronimo, Hardin, Kessler and Massopust to use fractal interpolation functions (FIFs) for
the generation of multi-wavelets (seeHardin et al., 1992; Geronimoet al., 1994) before the general
concept of multiresolution analysis of multiplicityr had been introduced inGoodmanet al. (1993) and
Goodman & Lee(1994) (the construction presented inGeronimoet al. (1994) is known as Geronimo–
Hardin–Massopust multi-wavelets and was latter constructed byChui & Lian (1996) without using
fractal interpolation). Their work led to the celebrated Donovan–Geronimo–Hardin–Massopust orthog-
onal multi-wavelets (seeDonovanet al., 1996). The present work is highly motivated by their results
(and especially fromHardinet al., 1992). We must point out that the construction of multi-wavelets via
fractal interpolation differs in a lot of ways from the standard wavelet techniques. The usual approach
is to seek for a solution of the refinement equation satisfying several properties (such as orthogonality,
continuity, high approximation order, etc.). The fractal interpolation approach on the other hand makes
use of suitable FIFs constructed to incorporate the desired properties. Interesting works regarding the
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construction of wavelets via fractal interpolation can also be found inHardin & Marasovich, 1999;
Kessler, 2007.

All the aforementioned constructions were based on FIFs defined on compact subsets ofR. There
have been some efforts to generate multiresolution analyses from fractal interpolation surfaces (FISs),
especially on triangulations (seeGeronimo & Hardin, 1993; Kessler, 2000) following the work ofMas-
sopust(1990). Of course, one can always take the tensor product of the 1D case, but working directly on
two dimensions has certain advantages. Our work is based on a new construction of fractal interpolation
on rectangular lattices, which can be generalized to produce FIFs defined on [0, 1]d. The structure of
the paper is as follows: In Section2, we briefly review the concept of iterated function systems (IFSs)
and fractal interpolation as laid out by Barnsley for the 1D case. In Section3, we introduce the new
construction of fractal interpolation on rectangular lattices of [0, 1]2. Section4 deals with the compu-
tation of the inner product of two FISs, which is necessary for the computation of the multi-wavelets.
In Section5, we prove some results regarding the scaling properties of the construction. Section6 deals
with the generation of the multiresolution analyses and the corresponding multi-wavelets. Finally, in
Section7 we generalize the construction to [0, 1]d and generate multiresolution analyses ofL2(Rd).
The result regarding the Ḧolder exponent of the constructed FIF is also found there since it is essential
for the validation of the construction.

2. Background

In this section, we briefly review the concept of fractal interpolation, as given by Barnsley for the 1D
case.

2.1 Iterated function system–recurrent iterated function system

Perhaps, the most typical way to construct fractal sets is via an IFS. An IFS{X;w1−N} is defined as a
pair consisting of a complete metric space(X, ρ), together with a finite set of continuous, contractive
mappingswi : X → X, with respective contraction factorssi , for i = 1, 2, . . . , N (N > 2). The attractor
of an IFS is the unique setE, for which E = limk→∞ Wk(A0) for every starting compact setA0, where

W(A) =
N⋃

i =1

wi (A) for all A ∈ H(X)

andH(X) is the complete metric space of all non-empty compact subsets ofX with respect to the
Hausdorff metrich (for the definition of the Hausdorff metric, properties of〈H(X), h〉 and examples of
IFS, seeBarnsley & Demko(1985) andBarnsley(1993) among others).

A notion closely related with IFS is that of the ‘recurrent iterated function system’ (RIFS) that
allows the construction of even more complicated sets. However, in this paper we will not deal with
RIFS, therefore we omit its definition.

2.2 Fractal interpolation functions

Barnsley(1986) was the first who considered the possibility of using IFS for data interpolation. He con-
structed functions that interpolate arbitrary data points, whose graphs are attractors of specific IFSs or
RIFSs (seeBarnsley, 1986; Barnsleyet al., 1989). Barnsley called those functions ‘fractal interpolation
functions’ (FIFs) due to the fact that they may have non-integer fractal dimension. Here, we briefly
describe this construction based on IFSs.
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Let X = [0, 1] × R andΔ = {(xi , yi ): i = 0, 1, . . . , N} be an interpolation set withN + 1
interpolation points such that 0= x0 < x1 < ∙ ∙ ∙ < xN = 1. The interpolation points divide [0, 1]
into N intervals Ii = [xi −1, xi ], i = 1, . . . , N, which we call ‘domains’. We defineδi = xi − xi −1,
i = 1, 2, . . . , N

Next, we defineN mappings of the form

wi

(
x

y

)

=

(
Ti (x)

Fi (x, y)

)

, for i = 1, 2, . . . , N, (1)

whereTi (x) = ai x+bi andFi (x, y) = si y+ pi (x) (pi (x) is a polynomial). Each mapwi is constrained
to map the end points of the region [0, 1] to the end points of the domainIi . That is,

wi

(
x0

y0

)

=

(
xi −1

yi −1

)

, wi

(
xN

yN

)

=

(
xi

yi

)

, for i = 1, 2, . . . , N. (2)

Vertical segments are mapped to vertical segments scaled by the factorsi . The parametersi is called the
‘vertical scaling factor’ of the mapwi .

It is easy to show that if|si | < 1, then there is a metricd equivalent to the Euclidean metric such that
wi is a contraction (i.e. there iŝsi : 0 6 ŝi < 1 such thatd (wi (Ex), wi (Ey)) 6 ŝi d (Ex, Ey); seeBarnsley,
1993).

Finally, we consider〈C([x0, xN ]), ‖ ∙ ‖∞〉, where‖φ‖∞ = max{|φ(x)|, x ∈ [x0, xN ]} and the
complete metric subspaceFΔ,s = {g ∈ C([x0, xN ]): Fi (x0, g(x0)) = yi −1, Fi (xN, g(xN)) = yi for i =
1, 2, . . . , N}. The Read–Bajraktarevic operatorTΔ,s: FΔ,s → FΔ,s is defined as follows:

(TΔ,sg)(x) = Fi (T
−1
i (x), g(T−1

i (x))), for x ∈ [xi −1, xi ], i = 1, 2, . . . , N,

wheres = (s1, . . . , sN)
>. It is easy to verify thatTΔ,sg is well defined and thatTΔ,s is a contraction

with respect to theρ∞ metric. According to the Banach fixed-point theorem, there exists a unique
f ∈ FΔ such thatTΔ,s f = f . If f0 is any interpolation function andfn = Tn

Δ,s f0, whereTn
Δ,s =

TΔ,s ◦ TΔ,s ◦ ∙ ∙ ∙ ◦ TΔ,s, then( fn)n∈N converges uniformly tof . The graph of the functionf is the
attractor of the IFS{X, w1−N} associated with the interpolation points (seeBarnsley, 1993). Note that
f interpolates the points ofΔ for any selection of the parameters of the polynomialspi that satisfies
(2). We will refer to a function of this nature as an FIF. It is readily proved by the above that the FIF is
the unique functionf that satisfies the functional relation

(TΔ,s f )(x) = Fi (T
−1
i (x), f (T−1

i (x))). (3)

Likewise, f is the unique function whose graphG satisfies the relation

G =
N⋃

i =1

wi (G). (4)

Let us consider the case wherewi are affine:

wi

(
x

y

)

=

(
Li (x)

Fi (x, y)

)

=

(
ai 0

ci si

)

∙

(
x

y

)

+

(
bi

di

)

, for i = 1, 2, . . . , N. (5)

Here,pi (x) = ci x + fi . The FIF that corresponds to the above IFS is called ‘affine’ FIF.
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From (2) four linear equations arise, which can always be solved forai , ci , bi , di in terms of the
coordinates of the interpolation points and the vertical scaling factorsi . Thus, once the contraction
factorsi for each map has been chosen, the remaining parameters may be easily computed (seeBarnsley,
1993).

3. Construction of FISs

Many authors tried to generalize Barnsley’s construction onR3 to produce FISs. More credited are the
works of Massopust, who was the first to consider the problem and also wrote a book on the subject
(seeMassopust, 1990, 1994), Bouboulis and Dalla (seeBoubouliset al., 2006; Bouboulis & Dalla,
2007b,c; Dalla, 2002), Malysz (seeMalysz, 2006), Zhao (seeZhao, 1996), Wang (seeWang, 2006)
and Feng (seeFeng, 2008). We should also mention the construction byXie & Sun (1997) which leads
to compact sets that interpolate data points onR3. However, in most of these attempts the construc-
tion uses either interpolation points, that are restricted to be collinear in the borders ofI = [0, 1]2, or
maps with equal vertical scaling factors. A general construction that can be applied to arbitrary data
points onRn was presented recently inBouboulis & Dalla(2007a). The main difference of this ap-
proach is that it takes into account not only the values of the interpolation points but also the values
of the borders of the rectangular grid, which are chosena priori. The method presented here is an
extension.

Consider a data set

Δ = {(xi , yj , zi, j ) ∈ I × R; i = 0, 1, . . . , N, j = 0, 1, . . . ,M}

such that 0= x0 < x1 < ∙ ∙ ∙ < xN = 1 and 0= y0 < y1 < ∙ ∙ ∙ < yM = 1, N,M ∈ N, where
I = [0, 1]2, which contains in total(N + 1) ∙ (M + 1) points. We also define the set

Δ′ = {(xi , yj ); i = 0, 1, . . . , N, j = 0, 1, . . . ,M}.

The points ofΔ′ divide [0, 1]2 into N ∙ M regions

Ii, j = [xi −1, xi ] × [yj −1, yj ],

for i = 1, 2, . . . , N, j = 1, 2, . . . ,M .
Next, we considerN ∙ M mappings of the form

Wi, j : [0, 1]2 × R → Ii, j × R: Wi, j






x

y

z




 =

(
Ti, j (x, y)

Fi, j (x, y, z)

)

=

(
Ti, j (x, y)

si, j z + pi, j (x, y)

)

, (6)

with

Ti, j (x, y) =

(
T1,i (x)

T2, j (y)

)

=

(
a1,i x + b1,i

a2, j y + b2, j

)

,

for all (x, y) ∈ [0, 1]2, wherepi, j is a continuous function on [0, 1]2 that satisfies a Ḧolder condition

|pi, j (x
′, y′)− pi, j (x, y)| 6 Li, j ‖(x

′ − x, y′ − y)‖
hi, j
1 ,
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for some constantsLi, j > 0, hi, j > 0 andsi, j ∈ (−1, 1), for all i = 1, 2, . . . , N, j = 1, 2, . . . ,M .
We can use any other norm equivalent to the Euclidean one. The‖ ∙ ‖1 norm was chosen to simplify
the notation in the proof of Proposition7.2. The parameterssi, j are called vertical scaling factors.
We confine the mapWi, j so that it maps the interpolation points that lie on the vertices of [0, 1]2 to
the interpolation points that lie on the vertices ofIi, j . Hence, we obtain the following
relations:

T1,i (x0) = xi −1, T1,i (xN) = xi ,

T2, j ( y0) = yj −1, T2, j ( yN) = yj

and

Fi, j (x0, y0) = zi −1, j −1, Fi, j (x0, yN) = zi −1, j ,

Fi1,i2(xN, y0) = zi, j −1, Fi, j (xN, yM ) = zi, j .

It is easy to show that there exists a metricρθ (equivalent with the Euclidean metric) such thatWi, j

is a contraction for alli = 1, 2, . . . , N, j = 1, 2, . . . ,M . To this end, consider the metricρ1 defined on
[0, 1]2 as follows:

ρ1((x
′, y′), (x, y)) = ‖(x′ − x, y′ − y)‖h

1,

whereh = min
{
hi1,i2

}
, and the metric

ρθ ((x
′, y′, z′), (x, y, z)) = ρ1((x

′, y′), (x, y))+ θ |z′ − z|

defined on [0, 1]2 × R, whereθ is properly specified (for a complete proof, see, e.g.Wang, 2006;
Bouboulis & Dalla, 2007a). Therefore, the IFS{[0, 1]2 × R,Wi, j , i = 1, 2, . . . , N, j = 1, 2, . . . ,M}
has a unique attractorG. In general,G is a compact subset ofR3 containing the points ofΔ. The
following proposition gives conditions so thatG is the graph of a continuous functionf . As mentioned
above, these conditions involve points that lie on∂ Ii1,i2 × R, for all i = 1, 2, . . . , N, j = 1, 2, . . . ,M(
where∂ Ii1,i2 is the boundary ofIi, j

)
. The proof can be found inBouboulis & Dalla(2007a) (in the

case of a Lipschitz condition, but it can be easily extended).

PROPOSITION3.1 Leth ∈ C([0, 1]2) be a function that interpolates the points ofΔ (i.e. h(xi , yj ) =
zi, j ) such that it satisfies a Ḧolder condition. If the IFS defined above satisfies the conditions

Fi, j (x0, y, h(x0, y)) = h(xi −1, T2, j ( y)), (7)

Fi, j (xN, y, h(xN, y)) = h(xi , T2, j ( y)), (8)

Fi, j (x, y0, h(x, y0)) = h(T1,i (x), yj −1), (9)

Fi, j (x, yM , h(x, yM )) = h(T1,i (x), yj ), (10)

for all (x, y) ∈ [0, 1]2, i = 1, 2, . . . , N, j = 1, 2, . . . ,M , then its attractorG is the graph of a contin-
uous functionf that interpolates the data points. Moreover,f is the unique function that satisfies the
functional relation

f (x, y) = Fi, j (T
−1
i, j (x, y), f (T−1

i, j (x, y))), (11)

for all (x, y) ∈ Ii, j , i = 1, 2, . . . , N, j = 1, 2, . . . ,M .
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As in the case of the 1D FIF,f is the unique function whose graphG satisfies

G =
N⋃

i =1

M⋃

j =1

Wi, j (G). (12)

The corresponding Read–Bajractarevic operatorTΔ,h,s is defined as

TΔ,h,s: FΔ,h,s → FΔ,h,s: (TΔ,h,sg)(x) = Fi, j (T
−1
i, j (x, y), g(T−1

i, j (x, y))),

if x ∈ Ii, j , for i = 1, . . . , N, j = 1, . . . ,M , whereFΔ,h,s is the space of all continuous functions on
[0, 1]2 that satisfy (7–10).

The relations (7–10) define a functional system that consists of 4∙ N ∙ M equations that associate
Fi, j with h (only at points of∂ Ii, j ). Considering thatFi, j (x, y, z) = si, j z + pi, j (x, y), we obtain the
system

pi, j (x0, y) = h(xi −1, T2, j (y))− si, j ∙ h(x0, y), (13)

pi, j (xN, y) = h(xi , T2, j (y))− si, j ∙ h(xN, y), (14)

pi, j (x, yM−1) = h(T1,i (x), yj −1)− si, j ∙ h(x, y0), (15)

pi, j (x, yM ) = h(T1,i (x), yj )− si, j ∙ h(x, yM ), (16)

for all (x, y) ∈ [0, 1]2, i = 1, 2, . . . , N, j = 1, 2, . . . ,M , wheresi, j are free parameters. In this paper,
we limit our interest only to the case where

pi, j (x, y) = r1,i, j ( y)x + r2,i, j (x)y + q1,i, j ( y)+ q2,i, j (x), (17)

for all i = 1, 2, . . . , N, j = 1, 2, . . . ,M . Solving the system of equations, we obtain

r1,i, j ( y)=
h(xi , T2, j ( y))− h(xi −1, T2, j ( y))

xN − x0
− si, j

h(xN, y)− h(x0, y)

xN − x0
,

q1,i, j (y)= h(xi −1, T2, j ( y))− si, j h(x0, y)− r1,i, j ( y)x0,

r2,i, j (x)=
h(T1,i (x), yj )− h(T1,i, j (x), yj −1)

yM − y0
− si, j

h(x, yM )− h(x, y0)

yM − y0

−
r1,i, j ( yM )− r1,i, j ( y0)

yM − y0
x −

q1,i, j ( yM )− q1,i, j ( y0)

yM − y0
,

q2,i, j (x)= h(T1,i (x), yj −1)− si, j h(x, y0)− r1,i, j ( yj −1)x − r2,i, j (x)y0 − q1,i, j ( y0),

for all x, y ∈ [0, 1]2, i = 1, 2, . . . , N, j = 1, 2, . . . ,M . Therefore, if one constructsN + M 1D
interpolants that satisfy a Ḧolder condition and interpolate the given data, then any IFS consisting of
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mappings of the above form satisfies the conditions of the propositions. More specifically, we con-
sider the functionsui that interpolate the points ofΔi = {(xi , yj , zi, j ), j = 0, 1, . . . ,M}, for i =
0, 1, . . . , N, and the functionsv j that interpolate the points of̃Δ j = {(xi , yj , zi, j ), i = 0, 1, . . . , N}, for
j = 0, 1, . . . ,M . Then (17) gives pi, j (x, y) in terms ofui ( y) and v j (x), for i = 1, . . . , N, j =
1, . . . ,M . In particular,

r1,i, j ( y)=
ui (T2, j ( y))− ui −1(T2, j ( y))

xN − x0
− si, j

uN( y)− u0( y)

xN − x0
, (18)

q1,i, j ( y)= ui −1(T2, j ( y))− si, j ∙ u0( y)− r1,i, j ( y)x0, (19)

r2,i, j (x)=
v j (T1,i (x))− v j −1(T1,i (x))

yM − y0
− si, j

vM (x)− v0(x)

yM − y0

−
r1,i, j ( yM )− r1,i, j ( y0)

yM − y0
x −

q1,i, j ( yM )− q1,i, j ( y0)

yM − y0
, (20)

q2,i, j (x)= v j −1(T1,i (x))− si, j ∙ v0(x)− r1,i, j (x0)− q1,i, j (x0), (21)

for i = 1, 2, . . . , N, j = 1, 2, . . . ,M . Substituting in (17) and taking into account that in our case
x0 = y0 = 0 andxN = yM = 1, we obtain

pi, j (x, y)= si, j (x − 1)( y − 1)z0,0 − si, j (x − 1)yz0,M − zi −1, j −1 + xzi −1, j −1

+yzi −1, j −1 − xyzi −1, j −1 − yzi −1, j + xyzi −1, j − xzi, j −1 + xyzi, j −1

−xyzi, j + si, j xzN,0 − si, j xyzN,0 + si, j xyzN,M − si, j u0( y)+ si, j xu0( y)

+ui −1(T2, j ( y))− xui −1(T2, j ( y))+ xui (T2, j ( y))− si, j xuN( y)− si, j v0(x)

+si, j yv0(x)+ v j −1(T1,i (x))− yv j −1(T1,i (x))+ yv j (T1,i (x))− si, j yvM (x), (22)

for all i = 1, 2, . . . , N, j = 1, 2, . . . ,M . This IFS gives rise to an FIS. Figure1 shows the graph of
an FIS, where the 1D interpolants are polygonal lines. (More examples and a more detailed description
using RIFS can be found inBouboulis & Dalla, 2007a.)

In an attempt to make this construction to depend explicitly on the original interpolation points, one
may consider that the 1D interpolants are affine FIFs constructed as mentioned in Section2.2 (affine
FIFs satisfy a Ḧolder condition; seeMassopust(1994) or Section7 for a more general result). In this
case,ui are the affine FIFs associated with the setΔi , together with some arbitrary vertical scaling
factorsσi, j , j = 1, . . . ,M , for i = 0, 1, . . . , N. Similarly, v j is the affine FIF associated with the
setΔ̃ j , together with vertical scaling factors̃σi, j , i = 1, . . . , N, for j = 0, 1, . . . ,M . We will call the
resulting FIS as ‘generalized-affine FIS’. Figure2 shows an example of an FIS constructed as mentioned
above.
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FIG. 1. An FIS that interpolates 5× 5 interpolation points. The values ofh at x ∈ ∂ Ii, j , i = 1, 2, . . . , 5, j = 1, 2, . . . , 5 (i.e. the
10 1D interpolants), are shown in red. In this case, we have selected 10 piecewise linear interpolants.

FIG. 2. An FIS that interpolates 5×5 interpolation points. The values ofh atx ∈ ∂ Ii, j , i = 1, 2, . . . , 5, j = 1, 2, . . . , 5, are affine
FIFs.
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4. Computation of integrals and moments

To compute the inner product of two FIFs, we need to know the values of their moments. We note that
for the 1D case, these values are already known (seeBarnsley, 1986):

fm =
∫ 1

0
xm f (x)dx =

∑m−1
k=0

∑N
i =1

(m
k

)
ak+1

i bm−k
i si fk + Qm

1 −
∑N

i =1 am+1
i si

, (23)

whereQm =
∫ 1

0 xmQ(x)dx andQ(x) = pi ◦T−1
i (x), for x ∈ Ii . Hence, the inner product of two FIFsf

and f̃ that interpolate the setsΔ = {(x0, y0), (x1, y1), . . . , (xN, yN)} andΔ̃ = {(x0, ỹ0), (x1, ỹ1), . . . ,
(xN, ỹN)} and are associated with the vertical scaling factors{s1, . . . , sn} and{s̃1, . . . , s̃n}, respectively,
is

〈 f, f̃ 〉 =
∫ 1

0
f (x) f̃ (x)dx =

∑N
i =1ai si

∫ 1
0 f (x)pi (x)+

∑N
i =1ai s̃i

∫ 1
0 f̃ (x)pi (x)+

∑N
i =1ai

∫ 1
0 pi (x) p̃i (x)

1 −
∑N

i =1 ai si s̃i
,

(24)
wherepi and p̃i are the polynomials of the IFS maps (seeHardinet al., 1992).

Using similar methods as inBarnsley(1986) andHardinet al.(1992), one can compute the moments
of an FIS defined on [0, 1]2.

LEMMA 4.1. Let f : [0, 1]2 → R be a generalized-affine FIS that interpolates the points ofΔ =
{(xi , yj , zi, j ) ∈ I × R; i = 0, 1, . . . , N, j = 0, 1, . . . ,M}, constructed as above. Then,

fn,m =
∫

[0,1]2
xnym f (x, y)dx dy

=

∑n,m
k=1,l=1
(k,l ) 6=(n,m)

∑N,M
i =1, j =1

(n

k

)(m

l

)
ak+1

i cl+1
j bn−k

i dm−l
j si, j fk,l + Qn,m

1 −
∑N,M

i =1, j =1 an+1
i cm+1

j si, j

, (25)

whereQn,m =
∫

[0,1]2 xnymQ(x, y)dx dy, Q(x, y) = pi, j ◦T−1
i, j (x, y), for (x, y) ∈ Ii, j , i = 1, 2, . . . , N,

j = 1, 2, . . . ,M .

Proof. Breaking the integral into parts and taking the functional relation (11), we have

fn,m =
∫

[0,1]2
xnym f (x, y)dx dy =

N,M∑

i =1, j =1

∫

Ii, j
xnym f (x, y)dx dy

=
N,M∑

i =1, j =1

∫

Ii, j
xnym(si, j f (T−1

1,i (x), T
−1
2, j (y))+ pi, j (T

−1
1,i (x), T

−1
2, j (y))dx dy

=
N,M∑

i =1, j =1

ai cj

∫

[0,1]2
(ai x + bi )

n(cj y + dj )
m ∙ (si, j f (x, y)+ pi, j (x, y))dx dy.

Applying Newton’s binomial expansion formula and solving forfn,m gives the result. �
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With this method one can compute several other integrals that are needed to compute the inner
product of two FISs. The respective relations are given below without proof. Letf (x, y) denote an FIS
defined on [0, 1]2 as discussed above. Furthermore, letu( y) andv(x) be two FIFs defined on [0, 1],
associated with the IFSs{R, w(1)1−M } and{R, w(2)1−N} and the interpolation pointsΔ(1) = {(yj , z

(1)
j ); j =

0, . . . ,M} andΔ(2) = {(xi , z
(2)
i ); i = 0, . . . , N}, respectively, where

w
(1)
j

(
y

z

)

=

(
T2, j ( y)

σ j z + qj ( y)

)

and w
(2)
i

(
x

z

)

=

(
T1,i (x)

σ̃i z + q̃i (x)

)

,

for i = 1, . . . , N, j = 1, . . . ,M . Similarly, let û( y) andv̂(x) be two FIFs defined on [0, 1], associated
with the IFSs{R, ŵ(1)1−M } and{R, ŵ(2)1−N}. Then,

• The integral
∫

[0,1]2 f (x, y)u( y)dx dy is computed as follows:

∫

[0,1]2
f (x, y)u( y)dx dy =




N∑

i =0

M∑

j =0

a1,i a2, j si, j

∫

[0,1]2
f (x, y)qj ( y)dx dy

+
N∑

i =0

M∑

j =0

a1,i a2, j σ j

∫

[0,1]2
u( y)pi, j (x, y)dx dy

+
N∑

i =0

M∑

j =0

a1,i a2, j

∫

[0,1]2
qj ( y)pi, j (x, y)dx dy




/



N∑

i =0

M∑

j =0

a1,i a2, j si, j σ j



.

• The relation for the integral
∫

[0,1]2 f (x, y)v(x)dx dy is similar to the one above, withv(x) in place
of u(y), q̃i in place ofqj andσ̃i in place ofσ j .

• The integralρn,m =
∫

[0,1]2 xnymu( y)v(x)dx dy is computed recursively as follows:

ρn,m =






N,M∑

i =0, j =0

n,m∑

k=1,l=1
(k,l ) 6=(n,m)

(
n

k

)(
m

l

)

ak+1
1,i al+1

2, j bn−k
1,i bm−l

2, j σi σ̃ j ρk,l

+
N,M∑

i =0, j =0

σi

∫

[0,1]2
(a1,i x + b1,i )

n(a2, j y + b2, j )
mu( y)q̃i (x)dx dy

+
N,M∑

i =0, j =0

σ̃ j

∫

[0,1]2
(a1,i x + b1,i )

n(a2, j y + b2, j )
mv(x)qj ( y)dx dy

+
N,M∑

i =0, j =0

σ̃ j

∫

[0,1]2
(a1,i x + b1,i )

n(a2, j y+b2, j )
mq̃i (x)qj ( y)dx dy




/



N∑

i =0

M∑

j =0

aμ+1
1,i aν+1

2, j σ j σ̃i



,
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whereρ0,0 is given by

ρ0,0 =




N,M∑

i =1, j =1

a1,i a2, j σ j

∫

[0,1]2
u( y)q̃i (x)dx dy +

N,M∑

i =1, j =1

a1,i a2, j σ̃i

∫

[0,1]2
v(x)qj ( y)dx dy

+
N,M∑

i =1, j =1

a1,i a2, j

∫

[0,1]2
q̃i (x)qj ( y)dx dy




/


1 −
N,M∑

i =1, j =1

a1,i a2, j σ̃i σ j



 .

• The integralτn,m =
∫

[0,1]2 xnymv(x)v̂(x)dx dy is computed recursively as follows:

τn,m =
1

m + 1

(
N∑

i =1

n−1∑

k=0

σ̃i ˆ̃σi

(
n

k

)

ak+1
1,i bn−k

1,i τk,0 +
N∑

i =1

σ̃i

∫

[0,1]2
(a1,i x + b1,i )

nv(x) ˆ̃qi (x)dx dy

+
N∑

i =1

∫

[0,1]2
ˆ̃σi (a1,i x + b1,i )

nq̃i (x)v̂(x)dx dy

+
N∑

i =1

∫

[0,1]2
(a1,i x + b1,i )

nq̃i (x) ˆ̃qi (x)dx dy

)/(

1 −
N∑

i =1

σ̃i ˆ̃σi a
n+1
1,i

)

.

• A similar relation holds for the integralτ ′
n,m =

∫
[0,1]2 xnymu( y)û( y)dx dy.

The inner product of two FISs is given in the following proposition.

PROPOSITION4.1 Consider two sets of interpolation points

Δ ={(xi , yj , zi, j ), i = 0, 1, . . . , N, j = 0, 1, . . . ,M},

Δ̂ ={(xi , yj , ẑi, j ), i = 0, 1, . . . , N, j = 0, 1, . . . ,M}

such that 0= x0 < x1 < ∙ ∙ ∙ < xN = 1 and 0= y0 < y1 < ∙ ∙ ∙ < yM = 1. Let ui , ûi be the 1D
interpolants associated with the setsΔi andΔ̂i = {(xi , yj , ẑi, j ), j = 0, 1, . . . ,M}, respectively. Simi-

larly, letv j , v̂ j be the interpolants associated with the setsΔ̃ j and ˆ̃Δ j = {(xi , yj , zi, j ), i = 0, 1, . . . , N}.
Consider the FISsf , f̂ that interpolateΔ andΔ̂ and are associated with the bordersui , v j andûi , v̂ j for
i = 0, . . . , N, j = 0, . . . ,M , with vertical scaling factorssi, j andŝi, j , respectively, fori = 1, . . . , N,
j = 1, . . . ,M . Then the inner product off and f̂ is given by

∫

[0,1]2
f (x, y) f̂ (x, y)dy dx =

1

1 −
∑N

i =1
∑M

j =1 si, j ŝi, j ai cj
∙




N∑

i =1

M∑

j =1

ŝi, j

(∫

[0,1]2
f̂ (x, y)pi, j (x, y)dy dx

)
ai cj
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+
N∑

i =1

M∑

j =1

si, j

(∫

[0,1]2
f (x, y) p̂i, j (x, y)dy dx

)
ai cj

+
N∑

i =1

M∑

j =1

(∫

[0,1]2
pi, j (x, y) p̂i, j (x, y)dy dx

)
ai cj



 ,

wherepi, j and p̂i, j are given by (22) in each case.

Putting together Proposition4.1 and relation (22), it is evident that in order to compute the inner
product

∫
[0,1]2 f (x, y) f̂ (x, y)dx dy we need to compute several integrals of the form

∫

[0,1]2
xnymui ( y)v j (x)dxdy,

∫

[0,1]2
xnymui ( y)ui ′( y)dxdy,

∫

[0,1]2
xnui ( y) f (x, y)dxdy,

∫

[0,1]2
xnymui (T2,l ( y))v j (x)dxdy,

∫

[0,1]2
xnymui (T2,l ( y))ui ′( y)dxdy,

∫

[0,1]2
xnui (T2,l ( y)) f (x, y)dxdy

(and likewise forv j and v j ◦ T1,k) and the moments ofui , v j , ui ◦ T2,l , v j ◦ T1,k, for all possible
combinations ofi, i ′, j, j ′, k, l andn,m = 0, 1. The first group of integrals can be evaluated using the
relations presented above in this section. For the second group, we need to observe thatui (T2,l (y)) and
v j (T1,k(x)) are also affine FIFs, for alli , j (see Proposition5.1 in Section5), and then use the same
relations. After considerable algebra (which can be done by Mathematica or Maple), we take the inner
product as a linear combination of the productszi, j ∙ ẑk,l , for i, k = 0, 1, . . . , N, j, l = 0, 1, . . . ,M . The
coefficients ofzi, j ∙ ẑk,l will be polynomials of the vertical scaling factorssi, j , ŝk,l , i, k = 0, 1, . . . , N,
j, l = 0, 1, . . . ,M .

5. Dilation properties of FIFs

We have already mentioned that affine FIFs satisfy certain dilation properties. The aim of this section
is to prove that similar relations are true for the generalized-affine FISs. In the following, we will limit
our interest to FISs that are constructed taking into account that the 1D interpolants are affine FIFs, as
mentioned in the last lines of Section3. In addition, we will assume that the vertical scaling factors
used for the construction of the affine FIFs and the construction of the FIS are equal tos (i.e. si, j = s,
i = 1, . . . , N, j = 1, . . . ,M ; σi, j = s, i = 0, . . . , N, j = 1, . . . ,M ; σ̃i, j = s, i = 1, . . . , N,
j = 0, . . . ,M). In the rest of the paper, when we are refereing to a generalized-affine FIS, we will mean
an FIS constructed in this manner (unless it is explicitly stated otherwise).

5.1 Dilation properties of affine FIFs

For the case of the affine FIF, it has been noticed that certain dilation properties hold. In particular, if we
restrict an FIF that interpolatesN points (see Section2.2) on the interval [xi −1, xi ], then we get another
FIF. This property is described in the following proposition. Its proof makes use of the self-affiniteness
of the graph off (seeHardinet al., 1992).
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PROPOSITION5.1 Let f be an affine FIF associated with the set of interpolation pointsΔ = {(xi , yi ),
i = 0, 1, . . . , N} and the vertical scaling factors (see Section2.2). Let w1, . . . , wN be the affine
mappings that form the respective IFS, then for anyk = 1, . . . , N,

(i) The restriction off on [xk−1, xk] is also an affine FIF that is associated with the points{(Tk(xi ),
Fk(xi , yi )), i = 0, 1, . . . , N} and the vertical scaling factors. The associated IFS contains the
affine mappingswk ◦ wi ◦ w−1

k , i = 1, . . . , N.

(ii) The function f (Tk(x)) is also an affine FIF, associated with the points{(xi , wk(xi )), i =0, . . . , N}
and the vertical scaling functions. The associated IFS contains the mappings

w′
i

(
x

y

)

=

(
Ti (x)

si y − spk(x)+ spi (x)+ pk(Ti (x))

)

,

for i = 1, . . . , N.

Proof.

1. Let G be the graph off , thenwk(G) is the graph of the restriction off on [xk−1, xk]. The result
now follows from the fact that

G =
N⋃

i =1

wi (G) ⇒ wk(G) =
N⋃

i =1

wk ◦ wi ◦ w−1
k (wk(G)) .

2. The graph off (Tk(x)) is w̌k ◦ wk(G), wherew̌k is given by

w̌k

(
x

y

)

=

(
T−1

k (x)

y

)

.

Similarly to the first part, we easily obtain

w̌k ◦ wk(G) =
N⋃

i =1

w̌k ◦ wk ◦ wi ◦ ◦w−1
k w̌k(w̌k ◦ wk(G)).

The result follows after some algebra. �
The following result is also found inHardinet al. (1992) and will be used later.

PROPOSITION5.2 LetP = {xi , i = 0, 1, . . . , N}, 0 = x0 < x1 < ∙ ∙ ∙ < xN = 1, be a partition of
[0, 1] and|s| < 1. The spaceFP,s of all affine FIFs that interpolate points of the formΔ = {(xi , yi ), i =
0, 1, . . . , N} and are associated with vertical scaling factors is a linear space with dimensionN + 1.

5.2 Dilation properties of FISs

Similar results hold for the generalized-affine FISs.

PROPOSITION5.3 Let the set of pointsP = {(xi , yj ), i = 0, . . . , N, j = 0, 1, . . . ,M}, such that
0 = x0 < x1 < ∙ ∙ ∙ < xN = 1 and 0 = y0 < y1 < ∙ ∙ ∙ < yM = 1, that define a partition of
[0, 1]2 and |s| < 1. The setFP,s of the generalized-affine FIS that interpolate a set of points of the
formΔ = {(xi , yj , zi, j ), i = 0, 1, . . . , N, j = 0, 1, . . . ,M} and are associated with the vertical scaling
factors is a linear space with dimension(N + 1) ∙ (M + 1).
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Proof. Let f1, f2 ∈ FP,s, two generalized-affine FISs with graphsG1 and G2 that correspond to

interpolation pointsΔ1 andΔ2, respectively, andλ1, λ2 ∈ R. Let W(1)
i, j andW(2)

i, j be the mappings of

the associated IFSs (see (6)) andĜ be the graph of the function̂f = λ1 ∙ f1 + λ2 ∙ f2. If u(1)i , v(1)j and

u(2)i , v(2)j are the corresponding affine FIFs used in the construction off1 and f2, then Proposition5.2

ensures that the 1D interpolantsûi = λ1 ∙ u(1)i + λ2 ∙ u(2)i andv̂ j = λ1 ∙ v(1)j + λ2 ∙ v(2)j are affine FIFs

(for i = 0, . . . , N, j = 0, . . . ,M). It is easy to prove that the mappingsŴi, j defined by

Ŵi, j






x

y

z




 =






T1,i (x)

T2, j ( y)

s ∙ z + p̂i, j (x, y)




 ,

with p̂i, j (x, y) = λ1 ∙ p(1)i, j (x, y)+ λ2 ∙ p(2)i, j (x, y), wherep(1)i, j and p(2)i, j are the corresponding functions

of W(1)
i, j and W(2)

i, j , for i = 1, . . . , N, j = 1, . . . ,M , satisfy the relationĜ =
⋃N

i =1
⋃M

j =1 Ŵi, j (Ĝ).
Furthermore, we can easily verify thatp̂i, j satisfies (22), with ûi , v̂ j in place ofui , v j and ẑi, j =

λ1 ∙ z(1)i, j + λ2 ∙ z(2)i, j in place ofzi, j , for i = 1, . . . , N, j = 1, . . . ,M . A straightforward choice for the
base of this linear space are the(N + 1) ∙ (M + 1) functions obtained by putting a ‘1’ on each of the
(N + 1) ∙ (M + 1) interpolation points and filling the rest with zeros. �

PROPOSITION5.4 LetΔ = {(xi , yj , zi, j ); i = 0, . . . , N, j = 0, . . . ,M} be a set of interpolation points
and|s| < 1. Let f be the generalized-affine FIS that interpolates the points ofΔ. Then the restriction
of f on Ik,l = [xk−1, xk] × [yl−1, yl ] and g = f |Ik,l (for fixed k, l ) is also a generalized-affine FIS
interpolating the set of points

Δk,l = {(T1,k(xi ), T2,l (yj ), Fk,l (xi , yj , zi, j )); i = 0, . . . , N, j = 0, . . . ,M}.

Proof. We split the proof into two parts. In the first, we will prove that the affine FIFsui , v j , i =
0, . . . , N, j = 0, . . . ,M , are mapped (throughWk,l ) to affine FIFs. Subsequently, we will deduce that
the graph ofg satisfies a relation such as (12), where the mappings are similar to (22).

For the first part, letui be one of the affine FIFs that interpolate the points ofΔi = {(xi , yj , zi, j ); j =
0, . . . ,M} and letũi be a function defined on [yk−1, yk] such that̃ui ( y)= Fk,l (xi , T

−1
2,l ( y), ui (T

−1
2, j ( y)))

for all i = 0, . . . , N. Substitutingx with xi in (22), we can easily see thatũi is expressed as a linear
combination of affine FIFs (plus a constant function which is an affine FIF).

For the final part, we observe that

Wk,l (G) =
N⋃

i =1

M⋃

j =1

Wk,l ◦ Wi, j ◦ W−1
k,l (Wk,l (G)), (26)

whereG is the graph off andWk,l (G) the graph ofg. Considering that

W−1
k,l






x

y

z




 =







T−1
1,k (x)

T−1
2,l ( y)

1
s(z − pk,l (T

−1
1,k (x), T

−1
2,l ( y)))





 ,
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it takes a few lines of algebra to see that the mappingsŴi, j = Wk,l ◦ Wi, j ◦ W−1
k,l have the form

Ŵi, j






x

y

z




 =







T1,k ◦ T1,i ◦ T−1
1,k (x)

T2,l ◦ T2, j ◦ T−1
2,l ( y)

s ∙ z + p̂i, j (x, y)





 ,

where

p̂i, j (x, y) = −s∙ pk,l (T
−1
1,k (x), T

−1
2,l ( y))+s∙ pi, j (T

−1
1,k (x), T

−1
2,l ( y))+ pk,l (T1,i ◦T−1

1,k (x), T2,i ◦T−1
2,l ( y)),

for i = 1, . . . , N, j = 1, . . . ,M . It is readily proved thatŴi, j has the form (6) and p̂i, j has the form
(17) for all i, j . Therefore, taking into account the first part of the proof and the fact that allŴi, j satisfy
(26), we deduce that the functiong is a generalized-affine FIS. �

6. Multiresolution analysis obtained from FISs

In the following, we give a definition of multiresolution analysis based onN-adic dilates (whereN > 2),
instead of dyadic ones which are more widely used. A ‘multiresolution analysis of multiplicityr ’ of
L2(R2) is a nested sequence of closed linear subspaces (Vn) in L2(R2) satisfying the following:

(A) f ∈ Vk, if and only if f (N−k∙) ∈ V0.

(B) Nestedness.V0 ⊂ V1.

(C) Density.
⋃

k∈Z
Vk = L2(R

2).

(D) Separation.
⋂

k∈Z
Vk = {0}.

(E) Stable shifts. There arer functionsφ1, φ2, . . . , φr such that the collection of integer translates
{φα0,i, j = φα(∙ − i, ∙ − j )/α = 1, . . . , r, i, j ∈ Z} forms a Riesz basis ofV0.

An immediate consequence of the above relations is that the set

{φαk,i, j = φα(Nk ∙ −i, Nk ∙ − j );α = 1, . . . , r, i, j ∈ Z}

is a Riesz basis ofVk. The functionsφ1, . . . , φr are called scaling functions and are said to gener-
ate the multiresolution analysis. The vector functionΦ = (φ1, . . . , φr )> is called scaling vector. If
there is a set of compactly supported scaling functions whose integer translates form an orthogonal
basis ofV0, then we call(Vk) ‘orthogonal’ multiresolution analysis. We note that since the number of
the scaling functions is finite,V0 is a ‘finitely generated shift-invariant’ (FSI) space. Another immedi-
ate consequence of the above relations is thatΦ satisfies a ‘matrix-vector refinement equation’ of the
form

Φ(x, y) =
∑

i, j ∈Z

Ci, jΦ(N x − i, N y − j ), (27)

for some sequence ofr × r matricesCi, j , called ‘scaling coefficients’.
There are several results regarding the conditions that the functionsφ1, . . . , φr need to satisfy, so

that they generate a multiresolution analysis. Conditions for the density property (C) were given by de
Boor, DeVore and Ron and can be found inde Booret al. (1993) for the case wherer = 1, but can be



CONSTRUCTION OF MULTI-WAVELETS USING FIS 919

easily extended (see alsoJia & Shen, 1994). Their result can be stated as follows (forr = 1): If F(φ)
(i.e. the Fourier transform ofφ) is non-zero almost everywhere in some neighbourhood of the origin,
then the density property holds. Note that in the case whereφ has compact support, this condition is true.
For the separation property, we have the general result given byJia & Shen(1994): Any FSI subspace
of L2(Rd) satisfies (D).

For the purpose of our construction, we fixN ands and defineV0 to be the space consisting of
functions f ∈ L2(R2), whose restriction to [α, α+1]×[β, β+1] is a generalized-affine FIS interpolating
sets of points of the form

Δ = {(α + i /N, β + j/N, zi, j ); i, j = 0, . . . , N},

for all α, β ∈ N. The corresponding(N + 1)2 scaling functions and their translates must form a basis of
V0. One such base can be obtained by selectingφκ , whereκ = l ∙ (N + 1)+ k + 1, as the FIS associated
with the set of points

Δk,l = {(i /N, j/N, zi, j ): zk,l = δi,kδ j,l },

for all k, l = 0, . . . , N. It is easy to verify that the corresponding scaling vectorΦ will satisfy a refine-
ment equation such as (27).

PROPOSITION6.1 Consider the generalized-affine FISsφ1, . . . , φr , defined as above (wherer = (N +
1)2). Let {X,Wκ

i, j , i, j = 1, . . . , N} be the IFS related toφκ , for κ = 1, . . . , r (whereX = [0, 1]2 × R

andWκ
i, j = (T1,i , T2, j , Fk

i, j )
>, see also Section3). Then the vectorΦ = (φ1, . . . , φr )> satisfies the

refinement equation

Φ(x, y) =
N−1∑

i =0

N−1∑

j =0

Ci, j ∙Φ(N x − i, N y − j ), (28)

whereCi, j arer × r matrices whose elements are given by

Ci, j (κ, λ) = Fκi, j (k/N, l/N, zk,l ),

with k, l the unique integers satisfyingλ = l ∙ (N + 1) + k + 1 (i.e. l = (λ − 1) div(N + 1), k =
(λ− 1) mod(N + 1)), for all i, j = 0, . . . , N − 1, κ, λ = 1, . . . , r ).

Proof. Let κ be fixed. By Proposition5.4, we know that the restriction ofφκ in each of the setsIi, j =
[i /N, (i +1)/N]× [ j/N, ( j +1)/N], i, j = 1, . . . , N, is also a generalized-affine FIS. Thus,φκ |Ii, j can
be expressed as a linear combination ofφ1(N ∙−i, N ∙− j ), . . . , φr (N ∙−i, N ∙− j ), with its coefficient
values on the vertices of the corresponding grid

φκ(x, y) =
r∑

λ=1

Fκi, j (k/N, l/N, zk,l ) ∙ φλ(N x − i, N y − j ),

for all (x, y) ∈ Ii, j , wherel = (λ − 1) div(N + 1) andk = (λ − 1) mod(N + 1). The result follows
immediately. �

Using the Gram–Schmidt orthogonalization process, we may obtain an orthonormal base ofV0,
namelyφ̂1, . . . , φ̂r . We defineVk as the space produced byφ̂1(Nk∙, Nk∙), . . . , φ̂r (Nk∙, Nk∙) and their
translates, i.e.

Vk = span{φ̂κ (Nk ∙ −i, Nk ∙ − j ); i, j ∈ Z, κ = 1, . . . , r }.

The following is true.
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PROPOSITION6.2 The spacesVk, k ∈ Z, generate a multiresolution analysis ofL2(R2).

Proof. Conditions (A) and (B) clearly hold due to the construction (see (28) and Proposition5.4). Since
V0 is an FSI space, conditions (C) and (D) also hold as mentioned above. The last condition follows
from the orthogonality of̂φ1, . . . , φ̂r . �

As is usually the case, we defineWk as the orthogonal complement ofVk into Vk+1, i.e.Vk ⊕ Wk =
Vk+1. In this case, all theWk’s are scaled versions ofW0 (i.e. f ∈ Wk ⇔ f (N−k) ∈ W0), Wk ⊥ Wk′ , for
k 6= k′, andL2(R2) = ⊕k∈ZWk. In addition, there exist functionsψ1, . . . , ψ r ′

(r ′ = (N2 − 1)(N + 1)2

in our case) orthogonal toφ’s and to each other so that their integer translates form a Riesz basis of
W0. The functionsψ1, . . . , ψ r ′

are called multi-wavelets. The wavelet vectorΨ = (ψ1, . . . , ψ r ′
) will

satisfy a relation of the form

Ψ (x, y) =
N−1∑

i =0

N−1∑

j =0

Di, j ∙Φ(N x − i, N y − j ), (29)

whereDi, j arer × r matrices, fori, j = 0, . . . , N − 1. The wavelet coefficientsDi, j can be computed
by solving the linear system

〈ψk(x, y), φl (x, y)〉 = 0,

for k = 1, . . . , r ′, l = 1, . . . , r . Let Ci, j (l , λ) denote the element of theCi, j matrix positioned atl th
line, λth column andDi, j (k, κ) denote the element ofDi, j positioned atkth line,κth column. Then the
above linear system can be reformulated as
〈

N−1∑

i =0

N−1∑

j =0

r ′
∑

κ=1

Di, j (k, κ) ∙ φκ(N x − i, N y − j ),
N−1∑

i ′=0

N−1∑

j ′=0

r∑

λ=1

Ci ′, j ′(l , λ) ∙ φλ(N x − i ′, N y − j ′)

〉

= 0,

or equivalently

r ′
∑

κ=1

r∑

λ=1

N−1∑

i =0

N−1∑

j =0

Ci, j (l , λ) ∙ 〈φκ(N x − i, N y − j ), φλ(N x − i, N y − j )〉 ∙ Di, j (k, κ) = 0, (30)

for all k = 1, . . . , r ′, l = 1, . . . , r . We can then apply the Gram–Schmidt orthogonalization procedure
to obtain an orthonormal basis. Another more elegant approach is to extend the polyphase matrix in
such a way that the extended matrix is paraunitary (see, e.g.Strang & Strela, 1995; Lawton et al.,
1996; Vaidyanathan, 1993; Keinert, 2004). Either way, the resulting multi-wavelets are not unique. At
this point we should note that the multi-wavelets are not continuous functions. They will have possible
discontinuities at the points [0, 1] × {i /N} and{i /N} × [0, 1], for all i = 0, . . . , N.

REMARK 6.1. It is easy to prove that the scaling vector has accuracy 2 (i.e. any polynomial up to order 1
belongs toV0). This means that the wavelet functions will have two vanishing moments.

For the implementation of the discrete multi-wavelet transform, we must provide a suitable prefilter-
ing (preprocessing) technique. Prefiltering is the process of converting the equally spaced samples of a
given signals(x, y) ∈ V0 to the vector coefficientsSi, j appearing in the multi-scaling expansion of the
signal, i.e.

s(x, y) =
∑

i, j

S>
i, j ∙Φ(x − i, y − j ).
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For scalar wavelets, the preprocessing and postprocessing steps are often omitted and the expansion
coefficients are equated with the point samples. This is often called as a ‘wavelet crime’ (seeStrang &
Nguyen, 1996). For the multi-wavelets, however, preprocessing and postprocessing steps are necessary.
We will use a short of interpolating prefilter (Hardin et al., 1992; Xia et al., 1998). We assume that
the signal has been sampled at the points(xi,k, yj,l ), xi,k = i + (k/N), yj,l = j + (l/N), for k, l =
0, . . . , N − 1. Then, theκth element of the vectorSi, j is given by

Si, j (κ) = s(xi,k, yj,l ),

wherek, l such thatκ = l (N + 1)+ (k + 1).

6.1 An example

Consider the case whereN =2, i.e. we have nine scaling functions. The inner product of two generalized-
affine FIFs f and f̂ each one of them interpolating the data sets

Δ =
{(

i

2
,

j

2
, zi, j

)
; i, j = 0, 1, 2

}
andΔ̂ =

{(
i

2
,

j

2
, ẑi, j

)
; i, j = 0, 1, 2

}
,

respectively, will be given as a linear combination of the productszi, j ∙ ẑi, j , i, j = 0, . . . , 2, where the
coefficients are rational polynomials ofs, with the common denominator

1152(−1 + s)4(1 + s)3.

Although it is possible to give the exact formula using the techniques in Section4, we chose to omit it
since it is very large and does not provide any additional information (the computation was implemented
in Mathematica). The scaling coefficientsCi, j , i, j = 0, 1, are given below:

C0,0 =



















1 1−s
2 0 1−s

2
1−s

4 0 0 0 0

0 1
2 + s 1 0 1−s

4
1−s

2 0 0 0

0 − s
2 0 0 0 0 0 0 0

0 0 0 1
2 + s 1−s

4 0 1 1−s
2 0

0 0 0 0 1+8s
4

1
2 + s 0 1

2 + s 1

0 0 0 − s
2 0 0 0 0 0

0 0 0 0 −3s
4 − s

2 0 0 0

0 0 0 0 s
4 0 0 0 0



















,

C1,0 =






















0 − s
2 0 0 0 0 0 0 0

1 1+2s
2 0 1−s

2
1−s

4 0 0 0 0

0 1−s
2 1 0 1−s

4
1−s

2 0 0 0

0 0 0 0 −3s
4 0 0 − s

2 0

0 0 0 1
2 + s 1+8s

4 0 1 1+2s
4 0

0 0 0 0 1−s
4

1
2 + s 0 1−s

2 1

0 0 0 − s
2 −3s

4 0 0 0 0

0 0 0 − s
2 −3s

4 0 0 0 0

0 0 0 0 0 − s
2 0 0 0






















,
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C0,1 =





















0 0 0 − s
2 0 0 0 0 0

0 0 0 0 −3s
4 − s

2 0 0 0

0 0 0 0 s
4 0 0 0 0

1 1−s
2 0 1−2s

2
1−s

4 0 0 0 0

0 1
2 + s 1 0 1+8s

4
1+2s

2 0 0 0

0 − s
2 0 0 −3s

4 0 0 0 0

0 0 0 1−s
2

1−s
4 0 1 1−s

2 0

0 0 0 0 1−s
4

1−s
2 0 1

2 + s 1

0 0 0 0 0 0 0 − s
2 0





















,

C1,1 =
























0 0 0 0 s
4 0 0 0 0

0 0 0 − s
2 −3s

4 0 0 0 0

0 0 0 0 0 − s
2 0 0 0

0 − s
2 0 0 −3s

4 0 0 0 0

1 1+2s
2 0 1+2s

2
1+8s

4 0 0 0 0

0 1−s
2 1 0 1−s

4
1+2s

2 0 0 0

0 0 0 0 0 0 0 − s
2 0

0 0 0 1−s
2

1−s
4 0 1 1+2s

2 0

0 0 0 0 1−s
4

1−s
2 0 1−s

2 1
























.

We can find the corresponding wavelets using Mathematica or Maple to extend the polyphase ma-
trix or solve the linear system and orthonormalize as mentioned earlier. It is possible to give an exact
formula of one set of corresponding wavelets in terms ofs, but since it is very long we rather give an
approximation for the cases = 1

2 (see Tables1 and2).
Figure3 shows the scaling functions, while Figs4 and5 show the corresponding orthonormal multi-

wavelets.

7. Generalization of the construction toL2(Rd)

In this section, we generalize the construction using FIFs defined on [0, 1]d, d > 3. The key ideas are
the same as before. However, we need some results regarding a Hölder property of a general class of
FIFs in order to make the construction valid.

7.1 FIFs on rectangular lattices of[0, 1]d

Consider a set of interpolation points of the form

Δ =
{(

x1,i1, x2,i2, . . . , xd,id , zi1,i2,...,id

)
∈ [0, 1]d × R; i l = 0, . . . , Nl , l = 1, 2, . . . , d

}

such that 0= xl ,0 < xl ,1 < ∙ ∙ ∙ < xl ,Nl = 1, Nl ∈ N, for l = 1, . . . , d, which contains in total(N1+1) ∙
(N2+1) ∙ ∙ ∙ (Nd +1) =

∏d
l=1(Nl +1) points. To simplify the notation, we seti = (i1, i2, . . . , in) ∈ A0,
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FIG. 3. Three of the scaling functions of the example presented in Section6.1. The rest of the scaling functions are rotations of
φ1 or φ2.

where

A0 = {0, 1, . . . , N1} × ∙ ∙ ∙ × {0, 1, . . . , Nd},

A1 = {1, 2, . . . , N1} × ∙ ∙ ∙ × {1, 2, . . . , Nd},

thus we may rewriteΔ as follows:Δ = {(xi, zi) ∈ I × R, i ∈ A0}. Let {ed,l ; l = 1, . . . , d} be the
standard basis ofRd. Furthermore, for anyx ∈ Rd, x = (x1, . . . , xd), we use the notations proj−λx and
projλx as follows:

proj−λx = (x1, . . . , xλ−1, xλ+1, . . . , xd) ∈ Rd−1,

projλx = (x1, . . . , xλ−1, 0, xλ+1, . . . , xd) ∈ Rd.

The interpolation points divide [0, 1]d into
∏d

l=1 Nl regions:

I i =
[
x1,i1−1, x1,i1

]
×
[
x2,i2−1, x2,i2

]
× ∙ ∙ ∙ ×

[
xd,id−1, xd,id

]
,

for all i ∈ A1. Next we consider
∏d

l=1 Nl mappings of the form

Wi : [0, 1]d × R → I i × R: Wi

(
x

z

)

=

(
Ti(x)

siz + pi(x)

)

, (31)

with Ti(x) =










T1,i1(x1)

T2,i2(x2)

...

Td,id(xd)









,

for all x = (x1, . . . , xd) ∈ [0, 1]d, wherepi is a continuous function that satisfies a Hölder condition of
the form

|pi(x)− pi( y)| 6 L i ∙ ‖x − y‖hi
1 ,
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FIG. 4. The orthonormal multi-wavelets of example6.1for s = 1/2. Part A.
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FIG. 5. The orthonormal multi-wavelets of example6.1for s = 1/2. Part B.

for some constantsL i > 0, hi > 0, for all i ∈ A1. Again, we confine the mapWi so that it maps the in-
terpolation points with coordinates on the vertices of [0, 1]d to the interpolation points with coordinates
on the vertices ofI i , i.e.

Tl ,i(0) = xl ,i l −1, Tl ,i(1) = xl ,i l
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and

pi

(

1 −
d∑

λ=1

δλed,λ

)

= zi−
∑d
λ=1 δλed,λ

− si ∙ zN−
∑d
λ=1 Nλδλed,λ

, (32)

for all δδδ = (δ1, . . . , δd) ∈ {0, 1}d, whereN = (N1, . . . , Nd) and1 = (1, . . . , 1).
As in Section3, we can define a metric (equivalent to Euclidean metric) such thatWi is a contraction,

i ∈ A1. Thus, the resulting IFS{Rd+1,Wi; i ∈ A1} has a unique fixed point. The following proposition
is a special case of a result found inBouboulis & Dalla(2007a).

PROPOSITION7.1 Leth be a continuous function that satisfies a Hölder property and interpolates the
points ofΔ. If the above-mentioned IFS satisfies the conditions

pi(projλx + ed,λ) = h
(
projλTi(x)+ xλ,iλed,λ

)
− si ∙ h(projλx + ed,λ), (33)

pi(projλx) = h
(
projλTi(x)+ xλ,iλ−1ed,λ

)
− si ∙ h(projλx), (34)

for all x ∈ [0, 1]d, i ∈ A1, λ = 1, . . . , d (wheresi are free parameters), then its attractorG is the graph
of a continuous functionf that also interpolates the data points.

We must point out that, as was the case whend = 2 in Section3, we are interested only with the
values ofh at the borders ofI i . For the following, we assume that allpi has the form

pi(x) =
d∑

l=1

rl ,i(proj−l x) ∙ xl +
d∑

l=1

ql ,i(proj−l x),

for all i ∈ A1, that the vertical scaling factors are equal tos (si = s, for all i ∈ A1) and that the
interpolation points are equidistant, i.e.Δ has the form

Δ =
{(

i1/N, i2/N, . . . , id/N, zi1,...,id

)
; i l = 0, . . . , N, l = 1, . . . , d

}
.

Solving the system (33–34), we obtain the following relations:

rl ,i(proj−l x)= h
(
projl T(x)+ xl ,i l ed,l

)
− h

(
projl T(x)+ xl ,i l −1ed,l

)

−si(h(projl x + ed,l )− h(projl x))

−
l−1∑

k=1

(rk,i(proj−k,l x + êd−1,l )− rk,i(proj−k,l x+)) ∙ xk

−
l−1∑

k=1

(qk,i(proj−k,l x + ed−1,l )− qk,i(proj−k,l x+)) (35)

and

ql ,i(proj−l x)= h(projl Ti(x))− si h(projl x) (36)

−
l−1∑

k=1

rk,i(proj−k,l x) ∙ xk − rl ,i(proj−l x)x̂l , jl −1 −
l−1∑

k=1

qk,i(proj−k,l x),

for all x = (x1, . . . , xd), i ∈ A1, l = 1, . . . , d.
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As mentioned above, we will show that such an FIF satisfies a Hölder property. We will use this
result to make a valid construction of FIFs that generate a multiresolution analysis. The search for the
Holder exponents of FIFs is an issue addressed by many authors in the past. As an example, we mention
the extensive work ofBedford(1989), where (among others) the relation between the Hölder exponent
and the box-counting dimension of the affine FIF (with one variable) is explored, and the work ofTricot
(1994). Results for the Ḧolder properties of a class of FIS can be found inWang(2006). The proposition
given below is a general result concerning FIFs defined on [0, 1]d. We use the‖ ∙ ‖1 norm to simplify
the notation. Before we go on with the proof, we briefly describe some properties from the code spaces
(or addresses) associated with the IFS (the interested reader can find more on the subject inBarnsley,
1993). A ‘path’ j1, j2, . . . , jn, . . ., wherejλ = ( j1,λ, j2,λ, . . . , jd,λ), defines a sequence of mappings
Wj1, . . . ,Wjn, . . . that are applied to an arbitrary point(x(0), z(0)) in the following way:

x(1) = Tj1(x
(0)), z(1) = sz(0) + pj1(x

(0))

x(2) = Tj1 ◦ Tj2(x
(0)), z(2) = s2z(0) + spj2(x

(0))+ pj1

(
Tj2

(
Tj2(x

(0))
))

x(3) = Tj1 ◦ Tj2 ◦ Tj3(x
(0)), z(3) = s3z(0) + s2pj3(x

(0))+ spj2

(
Tj3(x(0))+ pj1

(
Tj2 ◦ Tj3(x

(0))
))
,

...
...

At thenth iteration, we take

x(n) = Tj1 ◦ Tj2 ◦ ∙ ∙ ∙ ◦ Tjn(x
(0)),

z(n) = snz(0) + sn−1pjn(x
(0))+

n−1∑

r =1

sr −1pjr

(
Tjr +1

◦ Tjr +2
◦ ∙ ∙ ∙ ◦ Tjn(x

(0))
)
.

This sequence converges to the point(x, f (x)), x = (x1, . . . , xd), wherexl = 0. jl ,1 jl ,2 . . . , jl ,n, . . . is
a N-adic representation ofxl , l = 1, . . . , d, for any starting point(x(0), z(0)) ∈ [0, 1]d × R.

PROPOSITION7.2 (Hölder property of an FIF)
Let f : [0, 1]d → R be an FIF that interpolates the data set

Δ =
{(

i1/N, i2/N, . . . , id/N, zi1,...,id

)
; i l = 0, . . . , N, l = 1, . . . , d

}
.

Let {Rd+1,Wi; i ∈ A1} be the associated IFS as defined above. We assume thatpi satisfies a Ḧolder
property of the form|pi(x) − pi(y)| 6 L i ∙ ‖x − y‖hi

1 , whereL i, hi > 0 for all i ∈ A1. Then, there is a
Hölder exponent 0< h0 6 h = min{hi; i ∈ A1} and a positive numberL0 such that| f (x) − f (y)| 6
L0 ∙ ‖x − y‖h0

1 , for all x, y ∈ [0, 1]d.

Proof. We defineh = min{hi, i ∈ A1}, L = max{L i, i ∈ A1} and M = max{‖pi‖∞, i ∈ A1}. Now,
considerx, y ∈ [0, 1]d such thatx = (x1, x2, . . . , xd), y = (y1, y2, . . . , yd), where

x1 = 0. j1,1 j1,2 . . . , j1,n, . . . y1 = 0. ĵ1,1 ĵ1,2 . . . , ĵ1,n, . . .

x2 = 0. j2,1 j2,2 . . . , j2,n, . . . y2 = 0. ĵ2,1 ĵ2,2 . . . , ĵ2,n, . . .

...
...

xd = 0. jd,1 jd,2 . . . , jd,n, . . . yd = 0. ĵd,1 ĵd,2 . . . , ĵd,n, . . .
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are theN-adic representations ofx, y. If one of them is finite, then we fill the empty places with zeros.
Thus, after applying the pathsj1, j2, . . . , jn, . . . and ĵ1, ĵ2, . . . , ĵn, . . . to any starting point(x(0), z(0)) ∈
[0, 1]d × R, we have

|z(n) − ẑ(n)| 6 |s|n|z(0) − ẑ(0)| + |s|n−1
∣
∣
∣pjn(x

(0))− pĵn
(x(0))

∣
∣
∣

+
n−1∑

r =1

|s|r −1
∣
∣
∣pjr

(
Tjr +1

◦ Tjr +2
◦ ∙ ∙ ∙ ◦ Tjn(x

(0))
)

− pĵr

(
T̂jr +1

◦ T̂jr +2
◦ ∙ ∙ ∙ ◦ T̂jn

(x(0))
)∣∣
∣ .

(37)

Evidently, there is an integer numberk > 1 such that 1
Nk+1 < ‖x − y‖1 6 1

Nk . We divide [0, 1]d into

hypercubes of side-length 1/Nk.

Case I: There is a hypercube of side-length 1/Nk that contains bothx andy. This means that we can
found N-adic representations ofx, y, with the same firstk digits. Assuming that this is the case in (37)
and taking into account the Ḧolder property ofpi and the relation|pi(x)| 6 M , for all i ∈ A1, we take

|z(n) − ẑ(n)| 6 |s|n|z(0) − ẑ(0)| + |s|n−1
∣
∣
∣pjn(x

(0))− pĵn
(x(0))

∣
∣
∣

+
k∑

r =1

|s|r −1
∣
∣
∣pjr

(
Tjr +1

◦ ∙ ∙ ∙ ◦ Tjn(x
(0))
)
− pĵr

(
Tjr +1

◦ ∙ ∙ ∙ ◦ Tjk ◦ T̂jk+1
◦ ∙ ∙ ∙ ◦ T̂jn

(x(0))
)∣∣
∣

+
k∑

r =k+1

|s|r −1
∣
∣
∣pjr

(
Tjr +1

◦ ∙ ∙ ∙ ◦ Tjn(x
(0))
)

− pĵr

(
T̂jr +1

◦ ∙ ∙ ∙ ◦ T̂jn
(x(0))

)∣∣
∣

6 |z(0) − ẑ(0)| + |s|n−12M +
k∑

r =1

|s|r −1L

(
1

Nk−r

)h

+
n−1∑

r =k+1

|s|r −12M.

Taking limits asn → ∞, we obtain

| f (x)− f (y)| 6 L ∙
k∑

r =1

|s|r −1
(

1

Nk−r

)h

+ 2M
|s|k

1 − |s|
.

Since|s| < 1, N > 1, we can chooseh0 6 h such that|s| < (1/N)h0 < 1. Thus, if we define
M2 = |s|Nh0 < 1, after some algebra the above relation becomes

| f (x)− f (y)| 6 L ∙

(
k∑

r =1

Mr −1
2

)

∙
(

1

Nk−1

)h0

+
2M ∙ M2 ∙ Nh0

1 − |s|
∙
(

1

Nk+1

)h0

6
(

L ∙ M3 ∙ N2h0 +
2M ∙ M2 ∙ Nh0

1 − |s|

)
∙
(

1

Nk+1

)h0

,

whereM3 =
∑∞

r =0 Mr
2. Since 1

Nk+1 < ‖x − y‖1 6 1
Nk , we have finally that

| f (x)− f (y)| 6 M4 ∙ ‖x − y‖h0
1 ,



CONSTRUCTION OF MULTI-WAVELETS USING FIS 931

where

M4 =
(

L ∙ M3 ∙ N2h0 +
2M ∙ M2 ∙ Nh0

1 − |s|

)
.

Sinceh0 andL do not depend onk, we have the result.

Case II: There is not a hypercube of side-length 1/Nk that contains bothx andy. Then there are two
adjacent hypercubes of side-length 1/Nk such that the first containsx and the second containsy. Let x̃
be a common point of the two hypercubes (placed on their border), then we have

| f (x)− f (y)| 6 | f (x)− f (x̃)| + | f (x̃)− f (y)|

6 M4‖x − x̃‖h0
1 + M4‖y − x̃‖h0

1

6 2M4

(
1

Nk

)h0

6 2M4Nh0

(
1

Nk+1

)h0

6 2M4Nh0 ∙ ‖x − y‖h0
1 .

This completes the proof. �

REMARK 7.1.

• It is evident that the Ḧolder exponenth0 6 h computed above, such that|s| < (1/N)h0 < 1, depends
on |s|. If |s| is relatively close to 1, thenh0 will tend to be close to 0. On the other hand, if|s| is
relatively small (i.e.|s| < (1/N)h) thenh0 will be equal toh. This agrees with the results found in
Bedford(1989) for the affine 1D FIFs.

• The result holds even if we consider different vertical scaling factors assigned to eachi ∈ A1.

7.2 Multiresolution analysis of L2(Rd)

Now we proceed to the point of making the construction of FIFs to depend only on the interpolation
points (and of the free parameters). This is done by induction. We demonstrated in Section3 the
procedure ford = 2. The resulting FIFs were called generalized-affine FISs. Now we assume that the
construction of generalized affine FIFs is valid on [0, 1]d−1 and we construct a generalized-affine FIF
on [0, 1]d. To this end, consider the data sets

Δl , jl =
{(

j1
N
, . . . ,

jl−1

N
,

jl+1

N
, . . . ,

jd
N
, zj1,..., jd

)
; jk = 0, . . . , N, k = 1, . . . , d, k 6= l

}
,

for all jl = 0, . . . , N, l = 1, . . . , d. Let vl , jl : [0, 1]d−1 → R, be the generalized-affine FIF associated
with Δl , jl ands, for all jl = 0, . . . , N, l = 1, . . . , d. Using relations (32), (33) and (34), we can easily
prove thatpi will be given in terms ofvl , jl for all jl = 0, . . . , N, l = 1, . . . , d and for all i ∈ A1.
In fact, pi will be given as a linear combination ofvl , jl , some polynomials andvl , jl multiplied with
combinations of the coordinates ofx (see, e.g. (22)). By induction, Proposition7.2ensures thatpi will
satisfy a Ḧolder property for alli ∈ A1 making this construction valid. In addition, we can easily see
that certain properties such as the ones presented in Section5 also hold ford > 2.
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Finally, consider the(N + 1)d generalized-affine FIFs each one interpolating the set of points

Δk1,...,kd =
{(

i1
N
, . . . ,

id
N
, zi1,...,id

)
; zk1,...,kd = 1, zi1,...,id = 0, for all other indices

}
,

for all (k1, . . . , kd) ∈ A0. Using arguments similar to those in Sections4, 5 and6, we can prove that
φ1, . . . , φr , wherer = (N + 1)d, generate a multiresolution analysis ofL2(Rd). We can also compute
the (N + 1)d ∙ (Nd − 1) associated orthogonal wavelets. To avoid repeating the same arguments over
and over, we omit the proofs.

8. Conclusions and future research

The new construction of FIFs on [0, 1]d presented in Sections3 and7 generalizes the concept of affine
FIFs defined on [0, 1]. We have shown that they can be effectively used for the generation of multireso-
lution analyses ofL2(Rd). The associated multi-wavelets are orthonormal, but discontinuous. The free
parameters may be used to involve certain constrains in the analyses. It is motivating to see if we can
use the aforementioned construction to generate continuous multi-wavelets somewhere in the lines of
Donovanet al. (1996).
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