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ABSTRACT

We present a support vector machines (SVM) rationale suit-

able for quaternary classification problems that use complex

data, exploiting the notions of widely linear estimation and

pure complex kernels. The recently developed Wirtinger’s

calculus on complex RKHS is employed in order to compute

the Lagrangian and derive the dual optimization problem. We

show that this approach is equivalent with solving two real

SVM tasks exploiting a specific real kernel, which is induced

by the chosen complex kernel.

Index Terms— Complex SVM, Quaternary Classifica-

tion, complex kernels, RKHS

1. INTRODUCTION

Support vector machines (SVM) have become a popular tool-

box for addressing non-linear classification tasks. The excel-

lent performance of SVMs was firmly grounded in the context

of statistical learning theory, which ensures their fine gener-

alization properties. In the context of regression, this toolbox

is usually known as Support Vector Regression (SVR).

In the SVM framework, the notion of the Reproducing

Kernel Hilbert Space (RKHS) plays a significant role. The

original data are transformed into a higher dimensional RKHS

H (possibly of infinite dimension) and linear tools are applied

to the transformed data in the so called feature space H. This

is equivalent to solving a non-linear problem in the original

space. Furthermore, inner products in H can efficiently be

computed via the specific kernel function κ associated to the

RKHS H, disregarding the actual structure of the function

space.

Although the theory of RKHS has been developed by

the mathematicians for general complex spaces, most kernel-

based methods employ real kernels. This is largely due to
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the fact that many of them originated as variants of the orig-

inal SVM formulation, which was targeted to treat real data.

However, in modern applications complex data arise fre-

quently in areas as diverse as biomedicine, communications,

radar, etc. Hence, the design of SVMs suitable for treating

problems of complex and/or multidimensional outputs has,

recently, attracted attention in the machine learning com-

munity. Perhaps, till now, the most complete works, which

attempt to generalize the SVM rationale in this context, are

a) the Clifford SVMs [1] and b) the division algebraic SVR

[2, 3].

It is important to emphasize that the aforementioned

efforts to generalize the SVM rationale to complex and hy-

percomplex numbers are limited to the case of the output

data. These methods consider a multidimensional output,

which can be represented, for example, as a complex num-

ber or a quaternion, while the input data are real vectors.

In the following, they employ real valued kernels to model

the input-output relationship, breaking it down to its multi-

dimensional components. In this short paper we propose a

different approach. Our modeling takes place directly into

complex RKHS, which are generated by pure complex ker-

nels (meaning that they take complex inputs and return a

complex value), instead of real ones. In that fashion, be-

sides complex (or multidimensional) outputs, we can exploit

complex inputs as well. To be inline with the current trend

in complex signal processing, we employ the widely linear

estimation rationale, which has been shown to perform better

than the standard linear one [4, 5, 6, 7, 8, 9]. This means

that we model the input-output relationship as a sum of two

parts. The first is linear with respect to the input vector, while

the second is linear with respect to its conjugate. The widely

linear approach is a necessity, as the alternative would lead

to a significantly restricted model. In order to compute the

gradients, which are required by the Karush-Kuhn-Tucker

conditions and the dual, we employ the generalized Wirtinger

Calculus introduced in [10].

Following the proposed rationale, i.e., working in a RKHS
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H induced by a pure complex kernel κC, it can be shown that

the problem is equivalent to two problems in a real RKHS H,

albeit with a specific real kernel κR, which is induced by the

complex κC. Hence, well established algorithms that solve

the SVM problem can be easily modified to this case also. It

must be pointed out that these induced kernels are not trivial.

For example, the exploitation of the complex gaussian ker-

nel results to an induced kernel which is different from the

standard real gaussian RBF. Moreover, it turns out that the

proposed complex SVM rationale, is suitable for quaternary

classification (i.e., four classes problem), in contrast to the

binary classification carried out by the traditional real SVM

approach. This is because, the widely linear concept turns

out to be equivalent to two, instead of one, hyperplanes in the

corresponding RKHS.

The paper is organized as follows. In Section 2 the main

mathematical background regarding RKHS is outlined and

the differences between real and complex RKHS’s are high-

lighted. Section 3 describes the standard real SVM algorithm.

The main contributions of the paper can be found in Section 4,

where the theory and the generalized complex algorithms are

developed. Experiments are presented in Section 5. Through-

out the paper, we will denote the set of all integers, real and

complex numbers by N, R and C respectively. The imaginary

unit is denoted as i. Vector or matrix valued quantities appear

in boldfaced symbols.

2. MATHEMATICAL BACKGROUND

A RKHS [11] is a Hilbert space H over a field F for which

there exists a positive definite function κ : X × X → F with

the following two important properties: a) For every x ∈ X ,

κ(·, x) belongs to H and b) κ has the so called reproducing

property, i.e., f(x) = 〈f, κ(·, x)〉H, for all f ∈ H, in partic-

ular κ(x, y) = 〈κ(·, y), κ(·, x)〉H. The map Φ : X → H :
Φ(x) = κ(·, x) is called the feature map of H. In the case

of complex Hilbert spaces (i.e., F = C) the inner product is

sesqui-linear (i.e., linear in one argument and antilinear in the

other) and Hermitian. In the following, we will denote by H

a complex RKHS and by H a real one. Moreover, in order

to distinguish the two cases, we will use the notations κR and

ΦR to refer to a real kernel and its corresponding feature map,

instead of the notation κC, ΦC, which is reserved for pure

complex kernels.

Although there are many kernels to choose from, in this

paper the experiments are focused on the real Gaussian radial

basis function, i.e., κRν ,t(x,y) := exp
(

−t
∑ν

k=1
(xk − yk)

2
)

,

defined for x,y ∈ Rν , and the complex Gaussian ker-

nel: κCν ,t(z,w) := exp
(

−t
∑ν

k=1
(zk − w∗

k)
2
)

, where

z,w ∈ Cν , zk denotes the k-th component of the com-

plex vector z and exp(·) is the extended exponential function

in the complex domain. In both cases, t, is a free positive

parameter that defines the shape of the kernel function.

Besides the complex RKHS produced by a complex ker-

nel, such as the Gaussian one, one may construct a complex

RKHS as a cartesian product of a real RKHS with itself, in

a fashion similar to the identification of the field of complex

numbers, C, to R2. This technique is called complexification

of a real RKHS and the respective Hilbert space is called com-

plexified RKHS. This can be done , if we enrich H2, where

H is a real RKHS associated with a real kernel κR, with a

complex structure using the complex inner product:

〈f, g〉H = 〈f r, gr〉H + 〈f i, gi〉H + i (〈f i, gr〉H − 〈f r, gi〉H
)

,
(1)

for f = f r + if i, g = gr + igi, where H = {f = f r +if i; f r, f i ∈ H} is the respective complex RKH space. We

call H the complexification of H. We map the data samples

from the complex input space to the complexified RKHS H

using the following simple rule:

Φ̄C(z) = ΦR(x,y) + iΦR(x,y), (2)

whereΦR is the feature map of the real reproducing kernel κR,

i.e., ΦR(x,y) = κR(·, (x,y)) and z = x+iy. It must be em-

phasized that a complex RKHS, H, (whether it is constructed

through the complexification procedure, or it is produced by

a complex kernel) can, always, be represented as a cartesian

product of a Hilbert space with itself, i.e., we can, always,

identify H with a doubled real space H2. Furthermore, the

complex inner product of H can always be related to the real

inner product of H as in (1).

In order to compute the gradients of real valued cost func-

tions, which are defined on complex domains, we adopt the

rationale of Wirtinger’s calculus [12]. This was brought into

light recently [5, 6, 13], as a means to compute, in an effi-

cient and elegant way, gradients of real valued cost functions

that are defined on complex domains (Cν), in the context of

widely linear processing [7, 14]. It is based on simple rules

and principles, which bear a great resemblance to the rules

of the standard complex derivative, and it greatly simplifies

the calculations of the respective derivatives. In [10], the no-

tion of Wirtinger’s calculus was extended to general complex

Hilbert spaces, providing the tool to compute the gradients

that are needed to develop kernel-based algorithms for treat-

ing complex data. In [15] the notion of Wirtinger calculus

was extended to include subgradients in RKHS.

3. REAL SVM

In this section, we briefly describe the standard SVM ratio-

nale. Suppose we are given training data, which belong to two

separate classes C+, C− and have the form {(xn, dn); n =
1, . . . , N} ⊂ X × {±1}, where if dn = +1, then the n-th

sample belongs to C+, while if dn = −1, then the n-th sam-

ple belongs to C−. Consider the real RKHS H with respective

kernel κR. We transform the input data from X to H, via the

feature map ΦR. The goal of the SVM task is to estimate the



maximum margin hyperplane, that separates the points of the

two classes as best as possible [16, 17, 18]. This is usually

cast as

minimize
w∈H,c∈R

1

2
‖w‖2

H
+ C

N

N
∑

n=1

ξn

subject to

{

dn (〈ΦR(xn), w〉H + c) ≥ 1− ξn
ξn ≥ 0

for n = 1, . . . , N,

(3)

for some C > 0. This is a constant that determines the trade-

off between the two conflicting goals of the SVM task: maxi-

mizing the margin (i.e., 2/‖w‖2) and minimizing the training

error (i.e.,
∑N

n=1
ξn).

Introducing the Lagrangian and exploiting the KKT con-

ditions we find that the dual problem is casted as:

maximize
a∈RN

N
∑

n=1

an −
1

2

N
∑

n,m=1

anamdndmκR(xm,xn)

subject to

N
∑

n=1

andn = 0 and an ∈ [0, C/N ].

(4)

Furthermore, the solution can be shown to have an expansion:

w =

N
∑

n=1

andnκR(·,xn),

while the threshold c can be computed by averaging

c = dm −
N
∑

n=1

andnκR(xm,xn),

over all points with 0 < am < C, for m = 1, . . . , N .

4. COMPLEX SVM

Recall that in any real Hilbert space H, a hyperplane consists

of all the elements f ∈ H that satisfy

〈f, w〉H + b = 0, (5)

for some w ∈ H, b ∈ R. Moreover, as figure 1 shows, any

hyperplane of H divides the space into two parts, H+ = {f ∈
H; 〈f, w〉H + b > 0} and H− = {f ∈ H; 〈f, w〉H +
b < 0}. In the traditional SVM classification task, which has

been outlined in section 3, the goal is to separate two distinct

classes of data by a maximum margin hyperplane, so that one

class falls into H+ and the other into H− (excluding some

outliers). In order to be able to generalize the SVM rationale

to complex spaces, we need first to develop an appropriate

definition for a complex hyperplane. The difficulty is that

the set of complex numbers is not an ordered one, and thus

one may not assume that a complex version of (5) divides the

space into two parts, as H+ and H− cannot be defined. To

Fig. 1. A hyperplane separates the space H into two parts,

H+ and H−.

Fig. 2. A complex couple of hyperplanes separates the space

of complex numbers (i.e., H = C) into four parts.

circumvent this obstacle, we will provide a novel definition

of complex hyperplanes, which will divide the complex space

into four parts. This will be our kick off point for deriving

the complex SVM rationale, which classifies objects into four

(instead of two) classes.

Let us begin by considering the following two relations,

Re (〈f, w〉H + c) = 0, (6a)

Im (〈f, w〉H + c) = 0, (6b)

for some w ∈ H, c ∈ C, where f ∈ H. It is not difficult

to see, that this couple of relations represents two orthogo-

nal hyperplanes of the doubled real space, i.e., H2. To over-

come this constraint and be able to define arbitrarily placed

hyperplanes, we need to employ the widely linear estimation

functions, i.e.,

Re (〈f, w〉H + 〈f∗, v〉H + c) = 0, (7a)

Im (〈f, w〉H + 〈f∗, v〉H + c) = 0, (7b)

for some w, v ∈ H, c ∈ C, where f ∈ H. Depending on the



values of w, v, these hyperplanes may be placed arbitrarily

on H2. We define this complex couple of hyperplanes as the

set of all f ∈ H that satisfy either one of the relations (7), for

some w, v ∈ H, c ∈ C.

The aforementioned arguments demonstrate the signifi-

cant difference between complex linear estimation and widely

linear estimation functions, which has been pointed out by

many other authors, in the context of regression tasks. In the

current context of classification, we have just seen that con-

fining to complex linear modeling is quite restrictive, as the

corresponding couple of complex hyperplanes are always or-

thogonal. On the other hand, the widely linear case is more

general and covers all cases. The complex couple of hyper-

planes (as defined above) divides the space into four parts,

i.e.,

H++ =

{

f ∈ H;
Re (〈f, w〉H + 〈f∗, v〉H + c) > 0,
Im (〈f, w〉H + 〈f∗, v〉H + c) > 0

}

,

H+− =

{

f ∈ H;
Re (〈f, w〉H + 〈f∗, v〉H + c) > 0,
Im (〈f, w〉H + 〈f∗, v〉H + c) < 0

}

,

H−+ =

{

f ∈ H;
Re (〈f, w〉H + 〈f∗, v〉H + c) < 0,
Im (〈f, w〉H + 〈f∗, v〉H + c) > 0

}

,

H−− =

{

f ∈ H;
Re (〈f, w〉H + 〈f∗, v〉H + c) < 0,
Im (〈f, w〉H + 〈f∗, v〉H + c) < 0

}

.

Figure 2 demonstrates a simple case of a complex couple of

hyperplanes that divides C into four parts.

We are now ready to formulate the more general com-
plex SVM classification task as follows. Suppose we are
given training data, which belong to four separate classes
C++, C+−, C−+, C−−, i.e., {(zn, dn); n = 1, . . . , N} ⊂
X ×{±1± i)}. If dn = +1+ i, then the n-th sample belongs
to C++, i.e., zn ∈ C++, if dn = 1 − i, then zn ∈ C+−,
e.t.c. Consider the complex RKHS, H, with respective kernel
κC. Following a similar rationale to the real case, we trans-
form the input data from X to H, via the feature map ΦC.
The goal of the SVM task is to estimate a complex couple
of maximum margin hyperplanes, that separates the points of
the four classes as best as possible. To this end, we formulate
the primal complex SVM as

min
w,v,c

1

2
‖w‖2H + 1

2
‖v‖2H + C

N

N
∑

n=1

(ξrn + ξ
i
n)

s. to







drn Re (〈ΦC(zn), w〉H + 〈Φ∗

C(zn), v〉H + c) ≥ 1− ξrn
din Im (〈ΦC(zn), w〉H + 〈Φ∗

C(zn), w〉H + c) ≥ 1− ξin
ξrn, ξ

i
n ≥ 0

for n = 1, . . . , N.

(8)

Consequently, the Lagrangian function becomes

L(w, v,a, â, b, b̂) =
1

2
‖w‖2H +

1

2
‖v‖2H +

C

N

N
∑

n=1

(ξrn + ξ
i
n)

−
N
∑

n=1

an (drn Re (〈ΦC(zn), w〉H + 〈Φ∗

C(zn), v〉H + c)− 1 + ξ
r
n)

−
N
∑

n=1

bn

(

d
i
n Im (〈ΦC(zn), w〉H + 〈Φ∗

C(zn), w〉H + c)− 1 + ξ
i
n

)

−
N
∑

n=1

ηnξ
r
n −

N
∑

n=1

θnξ
i
n,

where an, bn, ηn, θn are the positive Lagrange multipliers of

the respective inequalities, for n = 1, . . . , N . Employing the

notion of Wirtinger’s calculus to derive the respective gra-

dients and exploiting the saddle point conditions of the La-

grangian function, it turns out that the dual problem can be

split into two separate maximization tasks:

maximize
a

N
∑

n=1

an −
1

2

N
∑

n,m=1

anamdrnd
r
mκr

C(zm, zn)

subject to











N
∑

n=1

and
r
n = 0

0 ≤ an ≤ C
N

for n = 1, . . . , N

(9a)

and

maximize
â

N
∑

n=1

bn −
1

2

N
∑

n,m=1

bnbmdind
i
mκr

C(zm, zn)

subject to











N
∑

n=1

bnd
i
n = 0

0 ≤ bn ≤ C
N

for n = 1, . . . , N,

(9b)

where

w =

N
∑

n=1

(and
r
n − ibndin)ΦC(zn),

v =

N
∑

n=1

(and
r
n − ibndin)Φ∗

C(zn)

and an + ηn =
C

N
, bn + θn =

C

N
,

for n = 1, . . . , N . The function κr
C

, that appears in the dual

problems, is the induced real kernel defined on R2ν ×R2ν (or

Cν × Cν) as follows:

κr
C(z, z

′) = κr
C

((

x

y

)

,

(

x
′

y
′

))

= 2Re(κC(z, z
′)), (10)

for z = x+ iy, z′ = x
′ + iy′.



Fig. 3. Pure Complex Support Vector Machines.

We observe that these problems are equivalent with two

distinct real SVM (dual) tasks employing the induced real ker-

nel κr
C

. One may split the (output) data to their real and imagi-

nary parts, as figure 3 demonstrates, solve two real SVM tasks

employing any one of the standard algorithms and, finally,

combine the solutions to take the complex labeling function:

g(z) = signi (

N
∑

n=1

(and
r
n + ibndin)κr

C(zn, z) + cr + ici) ,

where signi (z) = sign(Re(z)) + i sign(Im(z)).

If we follow the complexification procedure, i.e., employ

a real kernel κR and transform the input data from X to the

complexified space H, instead of the complex RKHS H, we

can similarly deduce that the dual of the complexified SVM

task is equivalent to two real SVM tasks employing the kernel

2κR. Hence, in both cases, we end up with two real SVM

tasks. However, while in the complexification procedure we

directly employ a selected real kernel, in the pure complex

case we exploit a real kernel that is induced by the selected

complex kernel. Although both scenarios are developed for

quaternary classification, they can be easily adapted to the

binary case also. This can be done by considering that the

labels of the data are real numbers (i.e., dn ∈ R) taking the

values ±1. In this case we solve one problem instead of two.

5. EXPERIMENTS

We perform two simple experiments to demonstrate the

advantages of exploiting complex data, using the popular

MNIST database of handwritten digits [19]. In both cases,

the respective parameters of the SVM tasks were tuned to

obtain the lowest error rate possible. The MNIST database

contains 60000 handwritten digits (from 0 to 9) for training

and 10000 handwritten digits for testing. Each digit is en-

coded as an image file with 28× 28 pixels. The scenario, that

it is typically used to quantify the performance of an SVM-

like learning machine, is to employ a one-versus-all strategy

to the training set (using the raw pixel values as input data)

and then measure the success using the testing set [20, 21].

In the first experiment, we compare the aforementioned

standard one-versus-all scenario with a classification task that

exploits complex numbers. In the complex variant, we per-

form a Fourier transform to each training image and keep only

the 100 most significant coefficients. As these coefficients are

complex numbers, we employ a one-versus-all classification

task using the binary complexified SVM rationale. In both

scenarios we use the first 6000 digits of the MNIST training

set to train the learning machines and test their performances

using the 10000 digits of the testing set. In addition, we used

the gaussian kernel with t = 1/64 and t = 1/1402 respec-

tively. The SVM parameter C has been set equal to 100.

The error rate of the standard real-valued scenario is 3.79%,

while the error rate of the complexified (one-versus-all) SVM

is 3.46%. In both learning tasks we used the SMO algorithm

to train the SVM. The total amount of time needed to perform

the training of each learning machine is almost the same for

both cases (the complexified task is slightly faster).

In section 4, we discussed how the 4-classes problem

comes naturally to the complex SVM. Exploiting the notion

of the complex couple of hyperplanes (see figure 2), we have

shown that the generalization of the SVM rationale to com-

plex spaces directly assumes quaternary classification. Using

this approach, the 4 classes problem can be solved using only

2 distinct SVM tasks instead of the 4 tasks needed by the 1-

versus-all or the 1-versus-1 strategies. The second experiment

compares the quaternary complex SVM approach to the stan-

dard 1-versus-all scenario using the first four digits (0, 1, 2



and 3). In both cases we used the first 6000 such digits of the

MNIST training set to train the learning machines. We tested

their performance using the digits contained in the testing set.

The error rate of the 1-versus-all SVM was 0.721%, while

the error rate of the complex SVM was 0.866%. However,

the 1-versus-all SVM task required about double the time for

training, compared to the complex SVM. This is expected, as

the latter solves half as many distinct SVM tasks as the first

one. In both experiments we used the gaussian kernel with

t = 1/49 and t = 1/1602 respectively. The SVM parameter

C has been set equal to 100 in this case also.

6. CONCLUSIONS

We presented two generalized SVM frameworks suitable for

binary and quaternary classification of data with complex in-

puts. We showed that in both cases this problem is equivalent

to solving two standard real SVM tasks, albeit with a specific

induced real kernel. In the first proposed framework (using

pure complex kernels as the complex gaussian one) this in-

duced kernel is not trivial. Finally, we presented two simple

experiments that demonstrated the advantages obtained by ex-

ploiting the complex structure of the input data.
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