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Abstract—This paper presents a wide framework for non-
linear online supervised learning tasks in the context of complex
valued signal processing. The (complex) input data are mapped
into a complex Reproducing Kernel Hilbert Space (RKHS),
where the learning phase is taking place. Both pure complex
kernels and real kernels (via the complexi�cation trick) can be
employed. Moreover, any convex, continuous and not necessarily
differentiable function can be used to measure the loss between
the output of the speci�c system and the desired response.
The only requirement is the subgradient of the adopted loss
function to be available in an analytic form. In order to derive
analytically the subgradients, the principles of the (recently
developed) Wirtinger's Calculus in complex RKHS are exploited.
Furthermore, both linear and widely linear (in RKHS) estimation
�lters are considered. To cope with the problem of increasing
memory requirements, which is present in almost all online
schemes in RKHS, the sparsi�cation scheme, based on projec-
tion onto closed balls, has been adopted. We demonstrate the
effectiveness of the proposed framework in a non-linear channel
identi�cation task, a non-linear channel equalization problem
and a QPSK equalization scheme, using both circular and non
circular synthetic signal sources.

Index Terms—Wirtinger's Calculus, Complex Kernels, Adap-
tive Kernel Learning, Projection, Subgradient, Widely Linear
Estimation

I. I NTRODUCTION

K ernel based methods have been successfully applied in
many classi�cation, regression and estimation tasks in a

variety of scienti�c domains ranging from pattern recognition,
image and signal processing to biology and nuclear physics
[1]–[24]. Their appeal lies mainly on the solid and ef�cient
mathematical background which they rely upon: the theory of
Reproducing Kernel Hilbert Spaces (RKHS) [25], [26]. The
main advantage of mobilizing this powerful tool of RKHS is
that it offers an elegant tactic to transform a nonlinear task (in
a low dimensional space) into a linear one, that is performedin
a high dimensional (possible in�nite) space, and which can be
solved by employing an easier “algebra”. Usually, this process
is described through the popularkernel trick [1], [2]:

“Given an algorithm, which can be formulated in
terms of dot (inner) products, one can construct an
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alternative algorithm by replacing each one of the
dot products with a positive de�nite kernel� .”

Although this trick works well for most applications, it con-
ceals the basic mathematical steps that underlie the procedure,
which are essential if one seeks a deeper understanding of the
problem. These steps are: 1) Map the �nite dimensionality
input data from the input spaceF (usually F � R� ) into
a higher dimensionality (possibly in�nite) RKHSH and 2)
Perform a linear processing (e.g., adaptive �ltering) on the
mapped data inH . The procedure is equivalent with a non-
linear processing (non-linear �ltering) inF . The speci�c
choice of the kernel� de�nes, implicitly, an RKHS with an
appropriate inner product. Moreover, the speci�c choice ofthe
kernel de�nes the type of nonlinearity that underlies the model
to be used.

Undeniably, the �agship of the so called kernel methods is
the popularSupport Vector Machinesparadigm [1]–[4]. This
was developed by Vapnik and Chervonenkis in the sixties and
in its original form was a linear classi�er. However, with
the incorporation of kernels it became a powerful nonlinear
processing tool with excellent generalization properties, as it
is substantiated by strong theoretical arguments in the context
of the Statistical Learning Theory [3], and it has been veri�ed
in practice, e.g., [2].

Motivated mainly by the success of SVMs in classi�cation
problems, a large number of kernel based methods emerged
in various domains. However, most of these methods relate
to batch processing, where all necessary data are available
beforehand. Over the last �ve years, signi�cant efforts have
been devoted to the development of online kernel methods for
adaptive learning (e.g., adaptive �ltering) [5]–[12], where the
data arrive sequentially. However, all the aforementionedker-
nel methods (batch and online) were targeted for applications
of real data sequences.

Complex-valued signals arise frequently in applications
as diverse as communications, biomedicine, radar, etc. The
complex domain not only provides a convenient and elegant
representation for these signals, but also a natural way to
preserve their characteristics and to handle transformations
that need to be performed. Therefore, it is natural to wonder
whether we should be able to apply the machinery of ker-
nels to handle learning tasks in complex domains. However,
although real RKHS have become quite popular and they
have been used in a large number of applications, complex
kernels (such as the complex Gaussian RBF kernel), while
known to the mathematicians (especially those working on
Reproducing Kernel Hilbert Spaces or Functional Analysis),
have rather remained in obscurity in the Machine Learning
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and Signal Processing communities. Only recently, in [19],
a uni�ed framework for processing in complex RKHS has
been developed. This can be achieved either by using popular
real kernels (such as the Gaussian RBF), taking advantage
of a technique calledcomplexi�cation of real RKHS, or by
employing any pure complex kernel (such as the complex
Gaussian RBF). In [19], this framework was applied to the
complex Least Mean Squares (LMS) task and two realizations
of the complex Kernel LMS (CKLMS) were developed.

In the more traditional setting, treating complex valued sig-
nals is often followed by (implicitly) assuming thecircularity
of the signal. Circularity is intimately related to the rotation
in the geometric sense. A complex random variableZ is
called circular, if for any angle� , both Z and Zei� (i.e.,
the rotation ofZ by angle � ) follow the same probability
distribution [27], [28]. Naturally, this assumption limits the
area for applications, since many practical signals exhibit non-
circular characteristics. Thus, following the ideas originated
by Picinbono in [29], [30], on-going research is focusing on
the widely linear �lters (or augmented�lters) in the complex
domain (see, for example, [27], [28], [31]–[43]). The main
characteristic of such �lters is that they exploit simultaneously
both the original signal as well as its conjugate analogue.

The present paper builds upon the rationale of [19] and
extends the theory to the case of complex subgradients, to
be used in the context of the powerful Adaptive Projected
Subgradient Method (APSM) [44]–[46], both for linear and
widely linear formulations. The APSM employs concepts of
operators in Hilbert spaces, [47], in order to derive ef�cient
generalizations of classical adaptive �ltering concepts,[48],
[49] and signi�cantly facilitate the treatment of convexly
constrained time-adaptive learning tasks, [50]. Thus, in this
study, the APSM machinery is extended to the complex case,
to provide a wide toolbox for adaptive learning in complex
RKHS. In this context, any convex function (not necessarily
differentiable) can be used as a measure of loss in the learning
task. The only requirement is that the subgradients of the
loss function must take an analytic form. To infuse robustness
into the design, the� -insensitiveversion of the corresponding
chosen loss function is utilized, due to its attractive features,
which are widely known in robust statistics, [1], [3], [51].As
this method employs subgradients in the minimization process,
Wirtinger's Calculus is further extended and the notion of
the Wirtinger's subgradients is introduced. To the best of our
knowledge, this is the �rst time that this notion is developed in
the respective literature, and its value goes beyond the current
context of APSM and can be used in any optimization task,
that involves subgradients in complex spaces.

The paper is organized as follows. In section II, the main
properties of RKHS are presented and the differences between
real and complex RKHS are highlighted. In section III, the
main characteristics of the recently developed Wirtinger's cal-
culus in complex RKHS are brie�y sketched, before the notion
of Wirtinger's subgradients for real functions of complex
variables is introduced. Applying this newly developed tool,
we compute the subgradients of the� -insensitive versions of
several popular loss functions (e.g.,l2, l1, Huber). The com-
plexi�cation and the pure complex kernelization procedures

are also described there. Section IV presents a detailed descrip-
tion of the proposed algorithmic scheme, i.e., the Complex
Kernel Adaptive Projected Subgradient Method, for adaptive
�ltering problems. Finally, Section V provides experimental
results in the context of (non-linear) channel identi�cation
and equalization tasks. Throughout the paper, we will denote
the set of non negative integers, real and complex numbers
by N; R; C respectively. For any integersk1 � k2, by k1; k2

we denote the setf k1; k1 + 1 ; : : : ; k2g. The complex unit is
denoted asi =

p
� 1. Vector and matrix valued quantities

appear in boldface symbols.

II. REPRODUCINGKERNEL HILBERT SPACES

In this section, we brie�y describe the theory of Reproduc-
ing Kernel Hilbert Spaces, as this is the main mathematical
tool employed in this study. Since we are interested in both
real and complex kernels, we recall the basic facts on RKHS
associated with a general �eldF, which can be eitherR or C.
However, we highlight the basic differences between the two
cases. The interested reader may dig deeper on this subject by
referring to [52] (among others).

Given a function� : X � X ! F and x 1; : : : ; x N 2 X
(typically X is a subset ofR� or C� , � > 0), the matrix1

K = ( K n;m )N with elementsK n;m = � (x n ; x m ), for
n; m = 1 ; : : : ; N , is called theGram matrix (or kernel
matrix) of � with respect tox1; : : : ; xN . A Hermitian matrix
K = ( K n;m )N satisfying

cH � K � c =
NX

n =1 ;m =1

c�
n cm K n;m � 0;

for all cn 2 F, n = 1 ; : : : ; N , where the notation� denotes
the conjugate elementand �H the Hermitian matrix, is called
Positive De�nite. In matrix analysis literature, this is the
de�nition of a positive semide�nite matrix. However, since
this is a rather cumbersome term and the distinction between
positive de�nite and positive semide�nite matrices is not
important in this paper, we employ the term positive de�nite,
as it was already de�ned. A function� : X � X ! F, which
for all N 2 N and allx 1; : : : ; x N 2 X gives rise to a positive
de�nite Gram matrixK , is called aPositive De�nite Kernel.
In the following, we will frequently refer to a positive de�nite
kernel simply askernel.

Next, consider a linear classH of complex valued functions,
f , de�ned on a setX . Suppose, further, that inH we can
de�ne an inner producth�; �i H with corresponding normk �kH

and thatH is complete with respect to that norm, i.e.,H is a
Hilbert space. We callH a Reproducing Kernel Hilbert Space
(RKHS), if there exists a function� : X � X ! F with the
following two important properties:

1) For everyx 2 X , � (�; x ) belongs toH .
2) � has the so calledreproducing property, i.e.,

f (x ) = hf; � (�; x )i H ; for all f 2 H ; x 2 X; (1)

in particular� (x ; y ) = h� (�; y ); � (�; x )i H .

1The term(K n;m )N denotes a squareN � N matrix.
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It has been shown (see [25]) that to every positive def-
inite kernel � there corresponds one class of functionsH
with a uniquely determined inner product in it, forming a
Hilbert space and admitting� as a reproducing kernel. In
fact, the kernel� produces the entire spaceH, i.e., H =
spanf � (x ; �)jx 2 X g2. The map� : X ! H : �( x ) =
� (�; x ) is called thefeature mapof H . Recall, that in the
case of complex Hilbert spaces (i.e.,F = C) the inner product
is sesqui-linear (i.e., linear in one argument and antilinear in
the other) and Hermitian:

haf + bg; hi H = ahf; h i H + bhg; hi H ;

hf; ag + bhi H = a� hf; g i H + b� hf; h i H ;

hf; g i �
H = hg; f i H ;

for all f; g; h 2 H , anda; b2 C. In the real case, the condition
� (x ; y ) = h� (�; y ); � (�; x )i H may be replaced by� (x ; y ) =
h� (�; x ); � (�; y )i H . However, since in the complex case the
inner product is Hermitian, the aforementioned condition is
equivalent to� (x ; y ) = ( h� (�; x ); � (�; y )i H )� .

Although, the underlying theory has been developed by the
mathematicians for general complex reproducing kernels and
their associated RKHSs, it is the case of the real kernels that
has been considered, mainly, by the Machine Learning and
Signal Processing communities. Some of the most widely used
kernels are theGaussian RBF, i.e.,

� �; Rd (x ; y ) := exp

 

�

P d
k=1 (xk � yk )2

� 2

!

; (2)

de�ned for x ; y 2 Rd, where� is a free positive parameter and
the polynomial kernel: � d(x ; y ) :=

�
1 + x T y

� d
, for d 2 N,

where�T stands for the transpose matrix. Many more kernels
emerging from various aspects of mathematics (ranging form
splines and wavelets to fractals) can be found in the related
literature [1], [2], [4], [53].

Complex reproducing kernels, that have been extensively
studied by the mathematicians, are, among others, theSzego
kernels, i.e, � (z; w) = 1

1� w � z , for Hardy spaces on the unit
disk, and the Bergman kernels, i.e.,� (z; w) = 1

(1 � w � z)2 ,
for Bergman spaces on the unit disk, wherejzj; jwj < 1
[52]. Another important complex kernel, that has remained
relatively unknown in the Machine Learning and Signal Pro-
cessing communities, is thecomplex Gaussian kernel

� �; Cd (z; w ) := exp

 

�
P d

k=1 (zk � w�
k )2

� 2

!

; (3)

de�ned on Cd � Cd, where z; w 2 Cd, zk denotes thek-
th component of the complex vectorz 2 Cd and exp is
the extended exponential function in the complex domain.
Its restriction � � :=

�
� �; Cd

�
jRd � Rd is the well knownreal

Gaussian kernel(2). An explicit description of the RKHSs of
these kernels, together with some important properties canbe
found in [54].

2The overbar denotes the closure of the set.

III. W ORKING ON COMPLEXRKHS

A. Wirtinger's Calculus on complex RKHS

Wirtinger's calculus [55] (or CR-Calculus) was brought
into light recently [27]–[29], [31], [56], [57], as a means to
compute, in an ef�cient and elegant way, gradients of real
valued cost functions that are de�ned on complex domains
(C� ). Although these gradients may be derived equivalently
in the traditional way, if one splits the complex variables to
the real and imaginary parts and considers the corresponding
partial derivatives, Wirtinger's toolbox usually requires much
less algebra and involves simpler expressions. It is based on
simple rules and principles, which bear a great resemblance
to the rules of the standard complex derivative, and it greatly
simpli�es the calculations of the respective derivatives;these
are evaluated by treatingz andz� independently using tradi-
tional differentiation rules. In [19], the notion of Wirtinger's
calculus was extended to general complex Hilbert spaces,
providing the tool to compute the gradients that are needed
to develop kernel-based algorithms for treating complex data.
This extension mainly uses the notion of theFréchet differ-
entiability, which is a path to generalize differentiability to
general Hilbert spaces. In this section, however, we give a
brief description and thus we do not get into much details
about Fréchet differentiability. The interested reader may �nd
more on the subject in [19], [58].

We begin our discussion with some basic de�nitions. Let
X � R� . De�ne X 2 � X � X � R2� and X = f z =
x + iy jx ; y 2 X g � C� , which is equipped with a complex
product structure. LetH be a real RKHS associated with
a real kernel� de�ned on X 2 � X 2 and let h�; �i H be its
corresponding inner product. Note that, under the mapping
(x ; y ) ! z = x + iy , X 2 is isomorphic toX (under the same
mapping,R2 is isomorphic toC). Thus, every real valued
f 2 H can be regarded as a function de�ned on eitherX 2 or
X, i.e., f (z) = f (x + iy ) = f (x ; y ), for z = x + iy . Next,
we de�ne H 2 = H � H . It is easy to verify thatH 2 is also a
Hilbert Space with inner product

hf ; gi H 2 = hf 1; g1i H + hf 2; g2i H ; (4)

for f = ( f 1; f 2), g = ( g1; g2). Our objective is to enrichH 2

with a complex structure. To this end, we de�ne the RKHS
H = f f = f 1 + if 2jf 1; f 2 2 Hg equipped with the complex
inner product:

hf ; gi H = hf 1; g1i H + hf 2; g2i H + i (hf 2; g1i H � h f 1; g2i H ) :

Similarly to the case ofX 2 and X, under the mapping
(f 1; f 2) ! f = f 1 + if 2, H 2 becomes isomorphic toH.

Consider the functionT : A � H ! C, T (f ) = Tr (f ) +
iT i (f ) de�ned on an open subsetA of H, whereuf ; vf 2 H ,
f = uf + iv f andTr ; Ti are real valued functions de�ned on
H 2. Due to the isomorphismsR2 ' C andH 2 ' H, we may
equivalently write:

T (f ) = ( Tr (uf ; vf ); Ti (uf ; vf ))T ; (5)

or

T (f ) = T (uf + iv f ) = Tr (uf ; vf ) + iT i (uf ; vf ): (6)
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Based on the isomorphism betweenH 2 and H, two types
of differentiability may be considered. In the �rst case,
if we apply the notion of the Fréchet differentiability on
T : H 2 ! R2 (5), we may de�ne the derivative ofT at
c = ( u c ; vc ) and the respective gradient, i.e.,r T (c), as well
as the partial derivatives ofT at c, r u T (c) and r v T (c).
If r T (c) exists, we will say thatT is Fréchet differentiable
in the real sense. On the other hand, applying the notion of
Fréchet differentiability onT : H ! C (6), we may de�ne
the complex derivative ofT at c = u c + ivc , i.e., dT (c).
In this case, ifdT (c) exists, we will say thatT is Fréchet
differentiable in the complex sense. However, the notion of
complex differentiability is rather strict and it excludesthe case
of real valued functionsT (these, as it can easily be shown, do
not obey the Cauchy-Riemann conditions), which are present
in all optimization tasks (taking the form of cost functions).
The goal in this work is to employ Wirtinger's calculus as an
alternative tool for computing derivatives. Wirtinger's calculus,
although based on the Fréchet differentiability in the real
sense, exploits the complex algebra to make the computations
easier and the derived formulas more compact [19], [58].

De�nition 1. We de�ne theFréchet Wirtinger's gradient(or
W-gradientfor short) ofT at c as

r f T (c) =
1
2

(r u T (c) � i r v T (c)) (7)

=
1
2

(r u Tr (c) + r v Ti (c)) +
i
2

(r u Ti (c) � r v Tr (c)) ;

and the Fréchet conjugate Wirtinger's gradient(or CW-
gradient for short) ofT at c as

r f � T (c) =
1
2

(r u T (c) + i r v T (c)) (8)

=
1
2

(r u Tr (c) � r v Ti (c)) +
i
2

(r u Ti (c) + r v Tr (c)) :

Remark1. The rationale that underlies these particular de�ni-
tions becomes apparent if one considers the Taylor expansion
formula of T . In [19], it is shown that

T (c + h) = T (c) +
1
2



h; (r u T (c) � i r v T (c)) � �

H (9)

+
1
2



h � ; (r u T (c) + i r v T (c)) � �

H + o(khkH):

The main rules of the generalized calculus can be found
in [19]. In view of these properties, one might easily compute
the W and CW gradients of any complex functionT , which is
written in terms off andf � , following the following simple
tricks:

� To compute the W-derivative of a functionT ,
which is expressed in terms off and f � , apply
the differentiation rules consideringf � as a
constant.

� To compute the CW-derivative of a function
T , which is expressed in terms off and f � ,
apply the differentiation rules consideringf as
a constant.

B. Wirtinger's Subgradients

Since subgradients of operators, which are de�ned on
Hilbert spaces, play a crucial role in several parts of this paper,
it is important to present their formal de�nition. For real valued
convex functions, de�ned on real Hilbert spaces, the gradient
at x0 satis�es the well known �rst order condition:

T(z) � T (x0) + hr T(x0); z � x0i ;

for all z. This condition has a simple geometric meaning when
T is �nite at x0: it says that the graph of the af�ne function
h(z) = T(x0)+ hr T(x0); z � x0 i is a non-vertical supporting
hyperplane to the convex setepiT 3 at (x0; T (x0)) . In other
words, (a)h(z) de�nes an osculant hyperplane of the graph
of T at (x0; T (x0)) and (b) all the points of the graph of
T lie at the same side of the hyperplane. Moreover, it is
well known that, in optimization tasks, the gradient direction
guarantees a path towards the optimal point. IfT is not Fréchet
differentiable atx, we can still construct such an osculant
hyperplane (and a corresponding path towards the optimal
point) using the subgradient.

De�nition 2. Let T : H ! R be a convex function de�ned
on a real Hilbert space (H , h�; �i H ). A vectorx @2 H is said
to be asubgradientof T at x 0 if

T (z) � T (x 0) + hx @; z � x 0i H : (10)

The set of all subgradients ofT at x 0 is called thesubdiffer-
ential of T at x 0 and is denoted by@T(x 0).

The notion of the subgradient is a generalization of the
classical differential of a functionT, at x 0, and it has proved
itself an indispensable tool for modern optimization tasks,
which involve objective functions that are not differentiable
[47], [59]. In the case of real-valued objective functions,the
use of the subgradient has shown a very rich potential for
demanding adaptive learning optimization tasks, e.g., [12],
[50], [60] and has also been popularized in the context of
`1 norms in the framework of compressive sensing.

It is clear that de�nition 2 cannot be applied for complex
valued functions, as it involves inequalities. Nevertheless, our
objective is to introduce a Wirtinger-like subgradient forthe
special case of a real functionT : H ! R. Suppose that
r sT(c) = ( r s

u T(c); r s
v T(c)) T is a subgradient ofT at c =

(cu ; cv )T , if we consider thatT is de�ned onH 2 instead of
H. Then the following inequalities hold

T(c + h) � T (c) + hh; r sT(c)i H 2

� T (c) +
��

hu

hv

�
;
�

r s
u T(c)

r s
v T(c)

��

H 2

� T (c) + hhu ; r s
u T(c)i H + hhv ; r s

v T(c)i H : (11)

This will be our kick off point for the derivation of the
respective Wirtinger-like subgradients.

De�nition 3. To be inline with the de�nition of Wirtinger
gradients, we de�ne theWirtinger subgradientof T : H ! R

3epi T denotes the epigraph ofT , i.e. the setf (x; y ) : x 2 H; y 2 R :
T (x) � yg.
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at c = cu + i � cv as

r s
f T(c) =

1
2

(r s
u T(c) � i � r s

v T(c)) ; (12)

and theconjugate Wirtinger subgradientof T at c as

r s
f � T(c) =

1
2

(r s
u T(c) + i � r s

v T(c)) ; (13)

for any ordinary subgradientr sT(c) of T at c = ( cu ; cv )T .
The set of all conjugate Wirtinger's subgradients ofT at c is
called theWirtinger subdifferentialof T at c and is denoted
by @f � T(c).

Under the scope of the aforementioned de�nitions, ashu =
h + h �

2 andhv = h � h �

2i , one can easily prove that

hh; r sT(c)i H 2 = hhu ; r s
u T(c)i H + hhv ; r s

v T(c)i H

= hh; (r s
f T(c)) � i H + hh � ; (r s

f � T(c)) � i H

=2 <
�
hh; (r s

f T(c)) � i H
�

:

Therefore, from (11) we obtain

T(c + h) � T (c) + hh; (r s
f T(c)) � i H + hh � ; (r s

f � T(c)) � i H :
(14)

or equivalently

T(c + h) � T (c) + 2 <
�
hh; (r s

f T(c)) � i H
�

: (15)

Relation (14) can be thought of as a type of Wirtinger
subgradient inequality (i.e., an inequality similar to (10) in
de�nition 2). At this point, we should note, that although we
de�ned two types of Wirtinger subgradients, in order to be
consistent with the de�nition of Wirtinger gradients, onlyone
will be used (ther s

f � T(c)) in the subsequent sections, as the
second subgradient,r s

f T(c), is r s
f � T(c)'s conjugate. The

following Lemma is an extension of the one presented in [61],
Theorem 25.6:

Lemma 1. Let l : C� ! R be a convex continuous function.
Also, let X (c) be the set of all limit points of sequences of
the form (r f � l (zn )) n 2 N, where (zn )n 2 N is a sequence of
points at whichl is Fréchet differentiable in the real sense
and lim n !1 zn = c. Then, the Wirtinger subdifferential ofl
at c is given by@f � l (c) = conv(X (c)) , whereconv denotes
the convex hull of a set, and the overline symbol stands for
the closure of a set.

Proof: Observe that the conjugate Wirtinger subgradient
is given by r s

f � l (c) = 1
2 (r s

u l (c) + i � r s
v l (c)) , while the

Fréchet subgradient obtained if we considerl (c) de�ned on
R2� is r s l (x ; y ) = ( r s

u l (x ; y ); r s
v l (x ; y ))T . Similar results

hold for the Wirtinger gradient and the Fréchet gradient if
l is differentiable atc. This implies an 1-1 correspondence
between the conjugate Wirtinger subgradientr s

f � l (c) and the
Fréchet subgradient12 r s l (x ; y ). A similar correspondence
exists between the conjugate Wirtinger gradientr f � l (c) and
the Fréchet gradient12 r l (x ; y ). Hence, applying Theorem
25.6 of [61] gives the result.

Remark2. We emphasize that the de�nition of the Wirtinger
subgradient is a general one and it can be employed whenever
a functionT is not Fréchet differentiable in the real sense. In

this paper, we exploit its use to derive the necessary subgra-
dients in the context of the Adaptive Projected Subgradient
Method.

C. Mapping data to complex RKHS

This paper considers the case of supervised (regression)
learning, i.e., the scenario where a sequencezn 2 C� , of
complex input data, and a sequencedn 2 C, of complex
desired responses, are available to the designer. No assump-
tion is made on the stochastic processes hidden behind the
sequence(zn ; dn )n � 0. Moreover, the stochastic properties of
both (zn )n � 0 and (dn )n � 0 are susceptible to change asn
grows larger. In the supervised learning scenario, one typically
estimates the output aŝdn = D n (z(n)) , where D n are
time-varying sequences of complex functions, so that the
“disagreement” betweendn and d̂n , measured via a user-
de�ned loss function, i.e.,l (dn � d̂n ), obtains some small
value. The choice of the space, whereD n lives, determines
the accuracy of the estimation. For example, in a typical
CLMS task,D n areC-linear functions, i.e.,D n (z) = w H

n z,
for somew n 2 C� , while in a typical widely linear LMS
(WL-LMS) task they take the form ofR-linear functions, i.e.,
D n (z) = w H z + vH z � , for somew n ; vn 2 C� [62]. In the
machinery presented in this paper,D n are non-linear functions
implicitly de�ned by the speci�c choice of the complex RKHS,
where the input complex datazn are mapped.

We can perform such transformations either by employing
pure complex kernels, or via traditional real kernels, as it
has been substantiated in [19]. For the �rst case, which we
will henceforth callpure complex kernelizationprocedure, the
choice of a complex kernel� C implicitly de�nes the complex
RKHS H, where the data are mapped. The transformation
from input spaceC� to the complex RKHS takes place via
the feature map� (z) = � C(�; z) of H. Thus, the input/output
training sequence(zn ; dn ) is transformed to(� (zn ); dn ). The
learning phase is taking place in the transformed data.

As an alternative, we can employ popular well-established
real kernels de�ned onR2� , using thecomplexi�cationpro-
cedure [19]. In this case, the induced RKHSH is a real one.
However, we can de�neH 2 and enrich it with a complex struc-
ture, i.e., construct the complex RKHSH, as it is described
in details in section III-A. Note that in this case, whileH is a
complex RKHS, its “generating” kernel is a real one, i.e.,� R.
We map the input data toH using the following simple rule:

�̂ (z) = �̂ (x + iy) = �̂ (x ; y ) = �( x ; y ) + i �( x ; y ); (16)

where� is the feature map of the real reproducing kernel� ,
i.e., �( x ; y ) = � R(�; (x ; y )) . It must be emphasized, that̂�
is not the feature map associated with the complex RKHSH.
Note that we cannot choose� to map the input data toH, if
we want to exploit the complex structure ofH, as� doesn't
have an imaginary component.

D. Linear and Widely Linear estimation in complex RKHS

Following the mapping of the input training data to the
complex RKHS, a linear, or a widely linear estimation function
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is employed. Thus, after the pure complex kernelization proce-
dure, we adopt the time adaptiveR-linear (in RKHS) estima-
tion functionD n (w ; v) = h� (zn ); w i H + h� (zn )� ; v i H . This
is inline with the widely-linear estimation rationale [29], [30],
where both the original data and their conjugate analogue are
taken into account. The objective of the proposed machineryis
to estimate, in an adaptive manner and at each time instance,
the values ofw andv so that the “disagreement” betweendn

and D n (w ; v), measured via a user-de�ned loss function, is
minimized. However, note that bothw , v live in the complex
RKHS H.

On the other hand, for the complexi�cation technique,
the C linear estimation functionD n (w ) =

D
�̂ (zn ); w

E

H
is employed, as this procedure implicitly adds a conjugate
component to the adopted model.

E. Selecting the Loss Functions

The strategy for constructing loss functions for the online
learning problem, which is employed in this work, contains
three steps.

1) Choose any convex continuous loss functionl : C ! R.
The functionl needs not be differentiable. The only re-
quirement is for its Wirtinger subgradients to be known
in analytic form.

2) Form an� -insensitive version ofl following the rule:

l � (z) := max f 0; l (z) � � g ; for all z 2 C; (17)

where� � 0 takes a predetermined value.
3) Given a linear or widely linear kernel-based estimation

function Dn (w ; v) and a given pair of training data
(zn ; dn ) 2 C� � C, de�ne the loss functionL �;n (w ; v) :
H ! R, as follows:

L �;n (w ; v) = l � (yn � Dn (w ; v)) ; (18)

for all w ; v 2 H.
A few comments are in order on the reason behind the

introduction of the� -insensitive version ofl . The functionl �
aims to robustify the online learning task against inaccura-
cies, noise, and outliers. Given a learning task, the designer
chooses, usually, a convex loss function,l , whose minimizers
are envisaged as the solutions to the learning task at hand.
However, it is often the case that the choice ofl does not
�t accurately the underlying model and noise pro�le, due to
various measurement inaccuracies and the presence of outliers.
To tackle such an unpleasant situation, we adopt here the
strategy of enlarging the set of minimizers ofl , without
changing radically the shape ofl , since we would like to
adhere to our original intuition on the choice ofl . This is
achieved by the introduction ofl � . To see this, in a more
rigorous way, assume that� � 0 and l are chosen such
that minz2 C l (z) � � . Notice that such an assumption is
not tight, since, in most cases, the lossl is chosen to be a
nonnegative function, withl (0) = 0 . Then, it is easy to verify
that (i) arg minz2 C l � (z) = f z 2 C : l (z) � � g, and (ii)
arg minz2 C l (z) � arg minz2 C l � (z). The � -insensitive ratio-
nale is also in agreement to the robust statistics' framework
[51].

To complete the presentation, we compute the Wirtinger
subgradients ofL �;n (w ; v) for some popular loss functionsl .
First comes a popular example.

Lemma 2 (Quadratic� -insensitive loss function). Choose the
l2 norm, l2(z) = jzj2, as the functionl in (18). Then the
Wirtinger's subdifferential ofL �;n is given by

@w � L �;n (w ; v) =

8
<

:

f� e�
n � (zn )g; if jen j2 > �
f 0g; if jen j2 < �

convf 0; � e�
n � (zn )g; if jen j2 = �

(19)

and

@v � L �;n (w ; v) =

8
<

:

f� e�
n � � (zn )g; if jen j2 > �
f 0g; if jen j2 < �

convf 0; � e�
n � � (zn )g; if jen j2 = �

;

(20)

whereen = dn � Dn (w ; v) and� is the function used to map
the input data toH.

Proof: If we choose thel2 norm as the functionl in
(18), thenL �;n (w ; v) = max f 0; jyn � Dn (w ; v)j2 � � g. Let
en (w ; v) = yn � Dn (w ; v) measure the error between the
�lter output dn and the estimation function (in many cases
en (w ; v) is simple denoted asen to save space). We compute
the subdifferential case by case.

1) Consider the case of a(w ; v) such thatjen (w ; v)j2 >
� . Then L �;n (w ; v) = jdn � Dn (w ; v)j2 � � =
l2 � en (w ; v) � � . It can be easily veri�ed that, as
l2(z) = jzj2 = z� z, its conjugate Wirtinger's gradient is
r z � l2(z) = z. Furthermore, applying rules (4) and (5)
of the generalized Wirtinger's calculus [19] we obtain
r w � en (w ; v) = � � (zn )e�

n (w ; v) andr v � en (w ; v) =
� � � (zn )e�

n (w ; v). The result follows from the chain
rule property of Wirtinger's calculus.

2) Next, consider the case of a(w ; v) such that
jen (w ; v)j2 < � . Then L �;n (w ; v) = 0 and the result
is obvious.

3) If a (w ; v) is given, such thatjen (w ; v)j2 = � , thenL �;n

is not differentiable at(w ; v). The result follows from
Lemma 1, as for any such point we can �nd a sequence
of pointsf (w m ; vm )gm 2 N converging to(w ; v), where
(w m ; vm ) is chosen so thatjen (w m ; vm )j 6= � (i.e.,
L �;n is differentiable at(w m ; vm ) for all m 2 N).

It is, by now, well-documented, [63], that thel2 norm is
not the best choice for a loss function in environments where
the noise is non-Gaussian. In order to build a general scheme,
which can accommodate any kind of noise and outlier pro�les,
the present section gives freedom to the designer to choose
any convex objective functionl . To support this approach,
we provide a couple of examples, which depart from the
classicall2 norm strategy. The next examples are motivated
by the recently overwhelming popularity of thel1 norm as a
robustness and sparsity-promoting loss function, [63].

Lemma 3 (l1 � -insensitive complex loss function). Choose the
complexl1 norm, l1(z) = jzj, as the functionl in (18). Then
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@w � L �;n (w ; v ) =

8
>><

>>:

n
�

�
sign( < ( en ))

2 + sign( = ( en ))
2i

�
� (z n )

o
; if j< (en )j + j= (en )j > �

f 0g; if j< (en )j + j= (en )j < �

conv
n

0; �
�

sign( < ( en ))
2 + sign( = ( en ))

2i

�
� (z n )

o
; if j< (en )j + j= (en )j = �

@v � L �;n (w ; v ) =

8
>><

>>:

n
�

�
sign( < ( en ))

2 + sign( = ( en ))
2i

�
� � (z n )

o
; if j< (en )j + j= (en )j > �

f 0g; if j< (en )j + j= (en )j < �

conv
n

0; �
�

sign( < ( en ))
2 + sign( = ( en ))

2i

�
� � (z n )

o
; if j< (en )j + j= (en )j = �

TABLE I
THE SUBDIFFERENTIAL OF THEl1 “ REAL” LOSS FUNCTION, WHEREen = dn � D n (w ; v ) AND � IS THE FUNCTION USED TO MAP THE INPUT DATA TO

H.

@w � L �;n (w ; v ) =

8
>>>>>><

>>>>>>:

f 0g ; if 0 � j en j < �
conv

�
0; � 1

2 e�
n � (z n )

	
if jen j = ��

� 1
2 e�

n � (z n )
	

; if � < jen j < �

conv
n

� �e �
n

2j en j � (z n ); � 1
2 e�

n � (z n )
o

; if jen j = �
n

� �e �
n

2j en j � (z n )
o

; if jen j > �

@v � L �;n (w ; v ) =

8
>>>>>><

>>>>>>:

f 0g ; if 0 � j en j < �
conv

�
0; � 1

2 e�
n � � (z n )

	
if jen j = ��

� 1
2 e�

n � � (z n )
	

; if � < jen j < �

conv
n

� �e �
n

2j en j � � (z n ); � 1
2 e�

n � � (z n )
o

; if jen j = �
n

� �e �
n

2j en j � � (z n )
o

; if jen j > �

TABLE II
THE SUBDIFFERENTIAL OF THEHUBER LOSS FUNCTION, WHEREen = dn � D n (w ; v ) AND � IS THE FUNCTION USED TO MAP THE INPUT DATA TOH.

the Wirtinger's subdifferential ofL �;n is given by

@w � L �;n (w ; v) =

8
>><

>>:

n
� e�

n
2j en j � (zn )

o
; if jen j > �

f 0g; if jen j < �

conv
n

0; � e�
n

2j en j � (z n )
o

; if jen j = �

(21)

and

@v � L �;n (w ; v ) =

8
>><

>>:

n
� e�

n
2j en j �

� (z n )
o

; if jen j > �
f 0g; if jen j < �

conv
n

0; � e�
n

2j en j �
� (z n )

o
; if jen j = �

(22)

whereen = dn � D n (w ; v ) and � is the function used to map the
input data toH.

Proof: For the �rst case, observe that if a(w ; v) is
given such thatjen (w ; v)j > � , then L �;n (w ; v) = jdn �
Dn (w ; v)j � � = l1 � en (w ; v) � � . As l1(z) = jzj =p

z� z, its Wirtinger's gradients arer z l1(z) = 1
2jzj z and

r z � l1(z) = 1
2jzj z

� . The result follows from the chain rule
of the generalized Wirtinger's calculus and Lemma 1. For the
other two cases, we work as in Lemma 2.

Lemma 4 (l1 � -insensitive “real” loss function). Choose the
“real” l r

1 norm, l r
1(z) = j< (z)j + j= (z)j, as the functionl in

(18). Then the Wirtinger's subdifferential ofL �;n is given in
table I.

Proof: For the �rst case, observe that if a(w ; v) is given
such thatj< (z)j + j= (z)j > � , then L �;n (w ; v) = j< (dn �
Dn (w ; v)) j + j= (dn � Dn (w ; v)) j � � = l r

1 � en (w ; v) � � . As

l r
1(z) = j< (z)j + j= (z)j = sign(< (z))< (z) + sign( = (z))= (z)

= sign(< (z))
z + z�

2
+ sign(= (z))

z � z�

2i
;

its Wirtinger's gradients are

r z l r
1(z) =

�
sign(< (z))

2
+

sign(= (z))
2i

�
;

r z � l r
1(z) =

�
sign(< (z))

2
�

sign(= (z))
2i

�
:

The result follows from the chain rule of the generalized
Wirtinger's calculus and Lemma 1. For the other two cases,
we work as in Lemma 2.

Lemma 5 (� -insensitive Huber loss function). Choose the
Huber loss,

lh (z) =
�

1
2 jzj2 if jzj < �

� (jzj � �
2 ) if jzj � �

;

as the functionl in (18), for some� > � . Then the Wirtinger's
subdifferential ofL �;n is given in table II.

Proof: We work similarly to lemmas 2 and 3.
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IV. COMPLEX KERNEL ADAPTIVE PROJECTED

SUBGRADIENT METHOD (CKAPSM)

The algorithmic scheme, which will be developed in this
section, is based on theAdaptive Projected Subgradient
Method (APSM) [44]–[46], [50]. This has been motivated
by projection-based adaptive algorithms, e.g., the Normalized
LMS and the Af�ne Projection Algorithm (APA) [64]. The
APSM has been successfully applied to a variety of online
learning problems, [9], [12], [50] and has been very recently
generalized to tackle constrained optimization tasks in general
Hilbert spaces [46]. In order to speed up convergence, APSM
concurrently processes multiple data points at every time
instant. Given a user de�ned positive integerq, for every
time instant n, APSM considers a sliding window on the
time axis of size (at most)q: J n := maxf 0; n � q + 1 g; n.
Each k 2 J n associates to the loss functionL �;k , which,
in turn, is determined by thek-th training data point (e.g.
(x k ; yk )). The setJ n indicates the loss functions that are going
to be concurrently processed at the time instantn. For a real
data sequencef (x n ; yn )gN

n =1 , APSM then employs the update
mechanism:

w n +1 = w n � � n

X

k2I n

! (n )
k

L �;k (w n )
kr sL �;k (w n )k2 r sL �;k (w n );

(23)

whereL �;k (w n ) is the loss function betweenyk and the esti-
mation functionD k (w ) (which is chosen in a manner similar
to section III-E, i.e.,D k (w ) = h� (x k ); w i ), r sL �;k (w n ) is
a subgradient ofL �;k at w n , � n is an extrapolation parameter,
! (n )

k are weights chosen such that
P

k2I n
! (n )

k = 1 andI n is
an appropriately chosen index set4 (I n � J n ). The interested
reader may dig deeper on this algorithmic scheme by referring
to [12], [60]. In this section we develop a similar machinery
for complex data sequences using the newly introduced notion
of Wirtinger's subgradients.

A. The CKAPSM Algorithm

We develop the algorithm for a general widely linear
estimation functionDn (w ; v), as this have been de�ned in
section III-D. For a C-linear estimation functionDn (w ),
simply ignore thevn term.

1) Choose a non-negative� � 0 and a positive number
q, which will stand for the number of loss functions
that are concurrently processed at every time instantn.
Furthermore, �x arbitraryw 0 andv0 as a starting point
for the algorithm (typicallyw 0 = v0 = 0).

2) Given any time instantn 2 N, de�ne the sliding
window on the time axis, of size at mostq: J n :=
maxf 0; n � q + 1 g; n. The user-de�ned parameterq de-
termines the number of training points (and associated
loss functions) that are concurrently processed at each
time instantn.

3) Given the current estimatesw n , vn , choose
any Wirtinger subgradient r s

w � L �;k (w n ; vn ) 2
@w � L �;k (w n ; vn ) and r s

v � L �;k (w n ; vn ) 2

4It will be de�ned later in section IV-A.

@v � L �;k (w n ; vn ). Thus, a collection of Wirtinger
subgradients is formed:

f W �;k;n = r s
w � L �;k (w n ; vn )gk2J n and

f V �;k;n = r s
v � L �;k (w n ; vn )gk2J n :

4) De�ne the active index setI n := f k 2 J n :
r s

w � L �;k (w n ; vn ) 6= 0; or r s
v � L �;k (w n ; vn ) 6= 0g.

5) If I n 6= ; , de�ne a set of weightsf ! (n )
k gk2I n � (0; 1],

such that
P

k2I n
! (n )

k = 1 . Each parameter! (n )
k assigns

a weight to the contribution ofL �;k to the following
concurrent scheme. Typically, we set! (n )

k = 1 =cardI n ,
for all k 2 I n (card stands for the cardinality of a set).

6) Calculate the next estimate ofw ; v using the following
recurrent scheme:

w n +1 = w n � � n
P

k2I n
! (n )

k
L �;k (w n ;v n )

2U�;k;n
W �;k;n ;

vn +1 = vn � � n
P

k2I n
! (n )

k
L �;k (w n ;v n )

2U�;k;n
V �;k;n :

(24)

whereU�;k;n = kW �;k;n k2 + kV �;k;n k2.
Equations (24) have been developed directly from the

traditional recurrent scheme of the real case, i.e., relation
(23), by substituting the real subgradients with the newly
introduced Wirtinger subgradients via the rationale developed
in the proof of Lemma 1. Loosely speaking, one can replace
the real (partial) subgradientr s

w L �;k (w ; v), that is obtained
if L �;k is considered as a function de�ned onH 2 � H 2, with
2r s

w � L �;k (w ; v). In the case whereI n = ; , the summation
term over; will be set equal to0. The extrapolation parameter
� n lies within the interval(0; 2M n ; ), whereM n is given in
(26). Notice that, due to convexity ofk �k2, it is easy to verify
that M n � 1. For larger values of the user-de�ned parameter
q, M n typically grows far from 1. We typically choose� n as

� n =
�

2M n � 0:05 if M n � 2
min(M n ; � 0) otherwise,

(25)

where� 0 is a user de�ned parameter (typically between 1 and
4).

Building upon the aforementioned algorithmic scheme, two
realizations of theComplex Kernel Adaptive Projected Subgra-
dient Method(CKAPSM) have been developed. The �rst one,
which is denoted as CKAPSM, adopts the complexi�cation
trick to map the data to a complex RKHS using any real kernel.
Moreover, theC-linear functionDn (w ) = h�̂ (zn ); w i H is
employed to estimate the �lter's output. The second algorithm,
which is denoted asAugmented Complex Kernel Adaptive
Projected Subgradient Method(ACKAPSM), adopts the pure
complex kernelization trick to map the data to a complex
RKHS using the complex gaussian kernel. In the latter case,
to estimate the �lter's output, the widely linear (augmented)
function Dn (w ; v) = h� (zn ); w i H + h� � (zn ); v i H is used.

B. Sparsi�cation

Any typical kernel-based adaptive �ltering algorithm, suf-
fers from increasing memory and computational requirements,
as a growing number of training points is involved in the
solution. This is veri�ed by the celebrated Representer theorem
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M n =

8
>>>>>>>>>><

>>>>>>>>>>:

P
k 2I n

! ( n )
k

L 2
�;k ( w n ; v n )

4U �;k;n






P
k 2I n

! ( n )
k

L �;k ( w n ; v n )

2U �;k;n
W �;k;n








2
+








P
k 2I n

! ( n )
k

L �;k ( w n ; v n )

2U �;k;n
V �;k;n








2 ;

if
P

k2I n
! (n )

k
L �;k (w n ;v n )

2U�;k;n
W �;k;n 6= 0 ;

or
P

k2I n
! (n )

k
L �;k (w n ;v n )

2U�;k;n
V �;k;n 6= 0 ;

1; otherwise:

(26)

[65], which states that the solution of such a task lies in the
�nite dimensional subspace of the RKHS, which is spanned
by the mapped training (real) input data points, i.e.,

w n =
n � 1X

k=0

ak � (x k ):

In our case, where complex input training data are considered,
this is equivalent with

w n =
nX

k=0

ak � (zk ); vn =
nX

k=0

ak � � (zk ); (27)

if the widely linear estimation rationale is adopted, as it can be
easily veri�ed by the gradients of the loss functions considered
in section III-E (where� is the function used to map the input
data toH, for k = 0 ; : : : ; n, andak 2 C).

In this paper, to cope with this problem, we focus on the
projection onto closedl2 balls rationale, introduced in [12],
[60]. In this context, we choose a positive parameter� and
impose thel2 closed ball onH with center0 and radius� ,
i.e., B [0; �] on the optimization scheme. That is, we replace
the recurrent step of the algorithm with

w n +1 = PB [0;�]

 

w n � � n

X

k2I n

! (n )
k

L �;k (w n ; vn )
2U�;k;n

W �;k;n

!

;

vn +1 = PB [0;�]

 

vn � � n

X

k2I n

! (n )
k

L �;k (w n ; vn )
2U�;k;n

V �;k;n

!

;

wherePB [0;�] is the metric projection mapping onto the closed
ball B [0; �] , which is given by

PB [0;�] (f ) =
�

f ; if kf k � � ;
�

kf k f ; if kf k > � :

Let us, now, turn our attention on the weights update stage
(i.e., equations (24)) and discuss on how they are practically
implemented on a machine, as bothw andv are elements of
an in�nite dimensional RKHS. After the receipt of then� th
sample, bothw andv have a �nite representation in terms of
� (zk ) and � � (zk ) respectively, fork = 0 ; : : : ; n � 1, (see
(27)). Thus, one needs to store into the machine's memory
only the n coef�cients, a0; a1; : : : ; an � 1, of the expansion.
Let A n � 1 = f a0; a1; : : : ; an � 1g be the set of the coef�cients
that has been stored at iterationn � 1. Next, as then-th sample
has been received, equations (24) update at mostq � 1 of the
coef�cients in A n � 1 (the ones that are inside the active set)
and, possibly, compute and store the coef�cientan (if this is
inside the active set, otherwisean is set to0). In particular,

for everyk 2 maxf 0; n � q + 1 g; n, which is inside the active
set I n , we employ the update equation:

anew
k = aold

k � � n ! (n )
k

L �;k (w n ; vn )
2U�;k;n

Ck ;

wherea(old )
n = 0 and Ck is the coef�cient of �( zk ) in the

respective gradientsW �;k;n and V �;k;n
5. Consequently, the

norms ofw n +1 andvn +1 are computed6 and if they are found
larger than� , each one of then + 1 coef�cients of A n is
shrunk by the factor �

kw n +1 k and/or �
kv n +1 k respectively. If,

after multiple shrinks, some of the coef�cients become really
small (i.e., smaller than a prede�ned threshold� � ), they are
thrown out of the stored memory.

V. EXPERIMENTS

The performance of CKAPSM and ACKAPSM has been
tested in the context of: (a) a non-linear channel identi�cation
task, (b) a non-linear channel equalization task and (c) an
equalization task of a QPSK modulation scheme. In all the
experiments, the parameters of the tested algorithmic schemes
were tuned for the best performance (i.e., to achieve the
smallest possible MSE). The code for the experiments can
be found at http://users.sch.gr/pbouboulis/kernels.html.

A. Channel Identi�cation

We consider the non-linear channel presented in [28], which
consists of a linear �lter:

tn =
5X

k=1

hk � sn � k+1 ;

where

hk = 0 :432
�

1 + cos
2� (k � 3)

5
�

�
1 + cos

2� (k � 3)
10

�
i
�

;

for k = 1 ; : : : ; 5, and the nonlinear componentxn = tn +
(0:15� 0:1i )t2

n . At the receiver end of the channel, the signal

5For example, if thel2 norm has been chosen,Ck = � e�
k , as equation

(19) suggests.
6The direct computation of the normkw n +1 k is a computation-

ally demanding step. However, as in the present context onlyq el-
ements of the expansion ofw are updated, we can compute the
norm kw n +1 k using a recurrent scheme. For example, ifq =
1, then w n +1 = w n + an +1 � (z n +1 ). Then kw n +1 k2 =
hw n +1 ; w n +1 i H = kw n k2 + an +1

P n
k =0 a�

k h� (z k ); � (z n +1 )i H +
a�

n +1
P n

k =0 ak h� (z n +1 ); � (z k )i H + h� (z n +1 ); � (z n +1 )i H .

http://bouboulis.mysch.gr/kernels.html
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is corrupted by white noise and then observed asrn
7. The

input signal that was fed to the channel had the form

sn =
� p

1 � � 2X n + i�Y n

�
; (28)

where X n and Yn are zero-mean random variables. This
input is circular for� =

p
2=2 and highly non-circular if�

approaches 0 or 1 [28]. The aim of the channel identi�cation
task is to construct a non-linear �lter that acts on the inputsn

and reproduces the outputxn as close as possible. To this end,
we apply CKAPSM and ACKAPSM to the set of samples

((sn ; sn � 1; : : : ; sn � L +1 ); rn ) ;

whereL > 0 is the �lter length. To measure the closeness of
�t between the original non-linear channel and the estimated
�lter, we compute the mean square error between the estimated
�lter's output, i.e., dn , andxn .

We tested CKAPSM and ACKAPSM using various input
random variables (e.g., gaussian, uniform) as well as some
popular noise models (e.g., gaussian, uniform, student, im-
pulse) and different types of loss functions. Their performance
is compared with the recently developed NCKLMS [19]
and ANCKLMS [62], which have been found to perform
signi�cantly better [19] than other non-linear complex adaptive
algorithmic schemes, such as Multi Layer Perceptrons (MLPs)
[28] and Complex non-linear Gradient Descend (CNGD) [27].
In all of the performed tests (and especially in the non-circular
case), CKAPSM and ACKAPSM considerably outperform the
other two algorithms in terms of convergence speed and steady
state mean square error. Figures 1, 3, 4, show the mean
learning curves over 300 different sets of 10000 samples for
each case.

In order to study the tracking performance of the proposed
schemes in a time-adaptive setting, the case of a non-linear
channel that undergoes a sudden signi�cant change is consid-
ered in Figure 2. This is a typical scenario used in the context
of adaptive �ltering. After receiving samplen = 5000, the
coef�cients of the nonlinear �lter become:

h1 = 0 :5 � 0:5i; h 2 = 0 :1i � 0:2; h3 = 0 :6 � 0:3i;

h4 = � 0:5; h5 = � 0:8 + 1i;

andxn = tn + ( � 0:1 + 0:08i )t2
n . Recall that, while CKLMS

keeps the information of the �rst channel throughout the
training phase, as the coef�cients associated with the �rst
�lter remain in the associated expansion, CKAPSM is able
to “forget” the information provided by the original channel
via the shrinking process, which has been described in section
IV-B. The novelty criterion sparsi�cation mechanism was used
for the NCKLMS and ANCKLMS algorithms with parameters
� 1 = 0 :15 and� 2 = 0 :2. The radius of the closed ball for the
CKAPSM and ACKAPSM sparsi�cation technique was set to
� = 10 .

The values of the parameters used in the algorithms are:
� = 5 (for both the real gaussian kernel and the complex
gaussian kernel),q = 5 or q = 20 (this is shown in each
�gure), � = 10 � 9 and� 0 = 4 .

7Hence, the input of the channel issn and the outputr n .
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Fig. 3. Learning curves for NCKLMS (� = 1 ), ANCKLMS, (� = 1 =4),
CKAPSM and ACKAPSM (�lter lengthL = 5 ) for the nonlinear channel
identi�cation problem with gaussian input and heavy-tailed student noise (� =
3)) at 20dB, for the non-circular input case (� = 0 :1). In the realization of
the CKAPSM and ACKAPSM the Huber loss function was employed.

The reason behind the improved performance of the APSM
variants, over the Normalized LMS ones [19], [62], is due
to the form of the iterations given in (23) and (24). In the
NLMS framework, one pair of training data is processed per
time instant n, while the APSM gives us the freedom to
concurrently process a set of training data, indicated byI n ,
8n. To each data pair, that belongs toI n , a weight! (n )

k is
assigned to quantify the signi�cance of the speci�c pair of
data in the concurrency scheme. Such a weighted contribution
of a set of training data helps APSM to achieve, in most of
the cases, lower error �oors compared to NLMS techniques.
Even further, due to the multiplicity of data that are utilized
in parallel, an extrapolation parameter� n is de�ned, which
can signi�cantly speed up convergence, since it obtains values
� 2. Recall that in the NLMS framework, [19], [62], the
associated extrapolation parameter is upper bounded by2. For
a more detailed discussion on the superior performance of the
NLMS variants versus the MLPs [28] and the CNGD [27], the
interested reader is referred to [19], [62].

B. Channel Equalization

The non-linear channel considered in this case consists of
a linear �lter:

tn = ( � 0:9 + 0:8i ) � sn + (0 :6 � 0:7i ) � sn � 1

and a memoryless nonlinearity

xn = tn + (0 :1 + 0:15i ) � t2
n + (0 :06 + 0:05i ) � t3

n :

At the receiver end of the channel the signal is corrupted by
white Gaussian noise and then observed asrn . The input signal
that was fed to the channels had the form

sn = 0 :5
� p

1 � � 2X n + i�Y n

�
; (29)

where X (n) and Y (n) are gaussian or uniform random
variables. The level of the noise was set to20dB. The aim of a
channel equalization task is to construct an inverse �lter,which
acts on the outputrn and reproduces the original input signal



IEEE TRANSACTIONS ON NEURAL NETWORKS 11

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
-14

-12

-10

-8

-6

-4

-2

0

10
*l

og
10

(M
S

E
)

n

Non linear channel Identification I.G.g.c.l2

 

 
NCKLMS
ANCKLMS
CKAPSM Q=20
ACKAPSM Q=20

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
-16

-14

-12

-10

-8

-6

-4

-2

0

10
*l

og
10

(M
S

E
)

n

Non linear channel Identification I.G.g.nc.l2

 

 
NCKLMS
ANCKLMS
CKAPSM Q=20
ACKAPSM Q=20

(a) (b)

Fig. 1. Learning curves for NCKLMS (� = 1 ), ANCKLMS, (� = 1 =4), CKAPSM and ACKAPSM (�lter lengthL = 5 ) for the nonlinear channel
identi�cation problem with gaussian input and gaussian noise at 20dB, for (a) the circular input case (� =

p
2=2) and (b) the non-circular input case

(� = 0 :1). In the realization of the CKAPSM and ACKAPSM thel2 norm was employed.
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Fig. 2. Learning curves for NCKLMS (� = 1 ), ANCKLMS, (� = 1 =4), CKAPSM and ACKAPSM (�lter lengthL = 5 ) for the nonlinear two-channels
identi�cation problem with gaussian input and gaussian noise at 20dB, for (a) the circular input case (� =

p
2=2) and (b) the non-circular input case (� = 0 :1).

In the realization of the CKAPSM and ACKAPSM thel2 norm was employed. After indexn = 5000 , both the linear and the non-linear component of the
channel have been changed.
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Fig. 4. Learning curves for NCKLMS (� = 1 ), ANCKLMS, (� = 1 =4), CKAPSM and ACKAPSM (�lter lengthL = 5 ) for the nonlinear channel
identi�cation problem with uniform input and gaussian noise at 20dB, for (a) the circular input case (� =

p
2=2) and (b) the non-circular input case

(� = 0 :1). In the realization of the CKAPSM and ACKAPSM thel2 loss function was employed.
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as close as possible. To this end, we apply the algorithms to
the set of samples

(( rn + D ; rn + D � 1; : : : ; rn + D � L +1 ; sn ) ;

whereL > 0 is the �lter length andD the equalization time
delay, which is present to, almost, any equalization set up.
Experiments were conducted on 300 sets of 5000 samples of
the input signal considering both the circular and the non-
circular case. The results were compared to the NCKLMS and
ANCKLMS, which have been shown to perform signi�cantly
better than other complex non-linear techniques such as MLPs
and CNGD [19]. The values of the parameters used in the
algorithms are:� = 5 (for both the real gaussian kernel
and the complex gaussian kernel),q = 5 , � = 10 � 8 and
� 0 = 4 . The sparsi�cation mechanism adopted for this case
was identical to the one employed in the channel identi�cation
paradigm. As it can be seen in �gures 5, 6, CKAPSM and
ACKAPSM converge more rapidly to the steady state mean
square error, than NCKLMS and ANCKLMS (which have
almost overlapping learning curves).

C. QPSK Equalization

In this case, we considered the non-linear channel which
consists of the linear �lter:

tn = ( � 0:9 + 0:8i ) � sn + (0 :6 � 0:7i ) � sn � 1

and the memoryless nonlinearity

xn = tn + (0 :1 + 0:15i ) � t2
n :

At the receiver end of the channel the signal is corrupted by
white Gaussian noise and then observed asrn . The input signal
that was fed to the channel consisted of the 4 QPSK symbols:
s1 = 1 + i , s2 = 1 � i , s3 = � 1 + i ands4 = � 1 � i . Both
the circular and the non-circular input case were considered.
For the �rst case, the 4 symbols are equiprobable, while
in the later their probabilities for occurrence in the input
sequence arep1 = 1 =10, p2 = 3 =10, p3 = 2 =10 and
p4 = 4 =10, respectively (applications of non equiprobable
symbol channels can be found in [66]). The objective in this
task is to construct an inverse �lter, which acts on the output rn

and reproduces the original input symbols as close as possible.
Experiments were performed on 100 sets of 10000 input
symbols. In the circular case, the NCKLMS and CKAPSM
exhibit similar performance reaching a steady state mean SER
of 0.0039 and 0.0034 respectively. For the non-circular case
NCKLMs attained a steady state mean SER of 0.005, while
the steady state mean SER of CKAPSM reached 0.0036 (i.e.,
a decrease of28%). The values of the parameters used in
the CKAPSM algorithm are:� = 5 , q = 5 , � = 10 � 8 and
� 0 = 4 . Figure 7 shows the SER versus SNR curves of those
algorithms.

VI. CONCLUSIONS

A general tool for treating non-linear adaptive �ltering
problems of complex valued signal processing, on complex
Reproducing Kernel Hilbert Spaces, has been developed. In
this context, the complex input data are mapped into a complex

RKHS, where the learning phase is taking place (based on the
Adaptive Projected Subgradient Method), using both linear
and widely linear estimation �lters. The complex RKHS is
implicitly de�ned through the choice of the kernel function.
Both pure complex kernels (such as the complex gaussian one)
as well as real kernels can be employed. Furthermore, any
convex continuous function, whose subgradient is given in an
analytic form, can be exploited to measure the loss between
the output of the speci�c system and the desired response.
To compute the subgradients of loss functions de�ned on
complex RKHS, the notion of Wirtinger's subgradient has been
introduced, and related subgradients have been derived fora
number of popular cost functions. The effectiveness of the
proposed framework has been demonstrated in several non-
linear adaptive �ltering tasks.
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