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Abstract—This paper presents a wide framework for non- alternative algorithm by replacing each one of the
linear online supervised learning tasks in the context of cmplex dot products with a positive de nite kernel”
valued signal processing. The (complex) input data are maygad — - .
into a complex Reproducing Kernel Hilbert Space (RKHS), AIthIout?]h ths.trlcktvr\]/orkst_vvelll 1;0r mt?]SttapE“C?u?[Es’ I Cor:j
where the learning phase is taking place. Both pure complex C€alS the basic mathematical steps that underlie the pnoee
kernels and real kernels (via the complexi cation trick) can be which are essential if one seeks a deeper understanding of th
employed. Moreover, any convex, continuous and not necesép  problem. These steps are: 1) Map the nite dimensionality
differentiable function can be used to measure the loss beten input data from the input spade (usually F R ) into
the output of the specic system and the desired response. a higher dimensionality (possibly in nite) RKH& and 2)

The only requirement is the subgradient of the adopted loss . ; . .
function to be available in an analytic form. In order to derive Ferform a linear processing (e.g., adaptive ltering) oe th

analytically the subgradients, the principles of the (recatly ~mapped data irH. The procedure is equivalent with a non-
developed) Wirtinger's Calculus in complex RKHS are explofed. linear processing (non-linear Itering) irfF. The specic
Furthermore, b_oth linear and widel_y linear (in RKHS) e_stimatic_)n choice of the kernel de nes, implicitly, an RKHS with an
Iters are considered. To cope with the problem of increasimy appropriate inner product. Moreover, the speci ¢ choicéhaf

memory requirements, which is present in almost all online . - .
schemes in RKHS, the sparsi cation scheme, based on projec- kernel de nes the type of nonlinearity that underlies thedelo

tion onto closed balls, has been adopted. We demonstrate theto be used.
effectiveness of the proposed framework in a non-linear chanel Undeniably, the agship of the so called kernel methods is
identi cation task, a. n(.)n-linear Chann.el equaliz.ation problem the popularSupport Vector Mach”']eparadlgm [D_]_[E_] Thls
and a QPSK equalization scheme, using both circular and non o5 qeveloped by Vapnik and Chervonenkis in the sixties and
circular synthetic signal sources. o -, . . .
e in its original form was a linear classi er. However, with
_ Index Terms—Wirtinger's Calculus, Complex Kemels, Adap-  the incorporation of kernels it became a powerful nonlinear
gve_ Kemnel Learning, Projection, Subgradient, Widely Linear processing tool with excellent generalization propertasit
stimation . . . .
is substantiated by strong theoretical arguments in théegon
| INTRODUCTION of the Statistical Learning Theory![3], and it has been vedli
: _in practice, e.g.,[]2].
K emel based methods have been successfully applied ivotivated mainly by the success of SVMs in classi cation
\_many classi cation, regression and estimation tasks ingoblems, a large number of kernel based methods emerged
variety of scienti c domains ranging from pattern recogumt,  in various domains. However, most of these methods relate
image and signal processing to biology and nuclear physigspatch processing, where all necessary data are available
[11-{24]. Their appeal lies mainly on the solid and ef cientpeforehand. Over the last ve years, signi cant efforts bav
mathematical background which they rely upon: the theory ggen devoted to the development of online kernel methods for
Reproducing Kernel Hilbert Spaces (RKH$) [25].][26]. Thedaptive learning (e.g., adaptive lterind)| [5]=]12], wieethe
main advantage of mobilizing this powerful tool of RKHS isjata arrive sequentially. However, all the aforementioked
that it offers an elegant tactic to transform a nonlineak (@ nel methods (batch and online) were targeted for applioatio
a low dimensional space) into a linear one, that is performedof real data sequences.
a high dimensional (possible in nite) space, and which can b Complex-valued signals arise frequently in applications
solved by employing an easier “algebra”. Usually, this BSX as diverse as communications, biomedicine, radar, etc. The
is described through the populkernel trick [1], [2]: complex domain not only provides a convenient and elegant
“Given an algorithm, which can be formulated in representation for these signals, but also a natural way to
terms of dot (inner) products, one can construct an preserve their characteristics and to handle transfoomsuti
. . o that need to be performed. Therefore, it is natural to wonder
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and Signal Processing communities. Only recently,[in [19yse also described there. Secfion IV presents a detailedipes
a unied framework for processing in complex RKHS hagion of the proposed algorithmic scheme, i.e., the Complex
been developed. This can be achieved either by using popWarnel Adaptive Projected Subgradient Method, for adaptiv
real kernels (such as the Gaussian RBF), taking advantalggring problems. Finally, Sectiofi V provides experimaht
of a technique calledcomplexi cation of real RKHS, or by results in the context of (non-linear) channel identi cati
employing any pure complex kernel (such as the complexd equalization tasks. Throughout the paper, we will denot
Gaussian RBF). In[]19], this framework was applied to théhe set of non negative integers, real and complex numbers
complex Least Mean Squares (LMS) task and two realizatiobg N; R; C respectively. For any integeks Kz, by ki; kz
of the complex Kernel LMS (CKLMS) were developed. we denote the s&‘tkl; ky +1;:::;ko0. The complex unit is

In the more traditional setting, treating complex valuegt sidenoted as = 1. Vector and matrix valued quantities
nals is often followed by (implicitly) assuming thercularity appear in boldface symbols.
of the signal. Circularity is intimately related to the rda
in the geometri_c sense. A complex random va_riazlleis Il. REPRODUCINGKERNEL HILBERT SPACES
called circular, if for any angle , both Z and Ze' (i.e., ) } ) )
the rotation ofZ by angle ) follow the same probability N this section, we brie y describe the theory of Reproduc-
distribution [27], [28]. Naturally, this assumption lirsitthe N9 Kernel Hilbert Spaces, as this is the main mathematical
area for applications, since many practical signals exhin- 00l employed in this study. Since we are interested in both
circular characteristics. Thus, following the ideas araged €@l and complex kernels, we recall the basic facts on RKHS
by Picinbono in [[29], [[3D], on-going research is focusing ofSsociated with a general eld, which can be eitheR or C.
the widely linear Iters (or augmentediters) in the complex However, we highlight the basic differences between the two
domain (see, for example, [27], [28]. [31]=143]). The maif@Ses. The interested reader may dig deeper on this sulject b
characteristic of such Iters is that they exploit simuleamusly referring to [52] (among others).
both the original signal as well as its conjugate analogue.  Given a function = X X ! Fandxy;::ixn 2 X

The present paper builds upon the rationale [off [19] arfyPically X is a subset oR or C, > 0), the matri
extends the theory to the case of complex subgradients, Ko = (Knm)" with elementsKnm = (Xn;xm), for
be used in the context of the powerful Adaptive Projectei™ = 1;:::;N, is called theGram matrix (or kernel
Subgradient Method (APSMJ _[44]=[46], both for linear andnatriX) of ~ with respect tax;;:::;xn . A Hermitian matrix
widely linear formulations. The APSM employs concepts df = (Knm )" satisfying

operators in Hilbert spaces, [47], in order to derive efrtie W
generalizations of classical adaptive Itering concedé3], K c= CCmKnm  O;
[49] and signicantly facilitate the treatment of convexly n=1:m=1

constrained time-adaptive learning tasks.| [50]. Thus,his t
study, the APSM machinery is extended to the complex ca
to provide a wide toolbox for adaptive learning in complex =~ ~ . . - S
RKHS. In this context, any convex function (not necessari OS'F'\_'G De nite “-1- matrix _anal_y3|s ||te_rature, this 'S.the
differentiable) can be used as a measure of loss in the fearn e n!t|on of a positive semide nite matrix. I_—|oyveyer, since
task. The only requirement is that the subgradients of tH?e'S is a rather cumbersome term and the distinction between

loss function must take an analytic form. To infuse robtxsi;nePOSitive d.e nitz_'-: and positive semide nite matr!ges s qot
into the design, the-insensitiveversion of the corresponding'mp_Ortant in this paper, we emplqy the term positive d_e hite
chosen loss function is utilized, due to its attractive deas, 2> it was already de ned. A function: X~ X I F, which
which are widely known in robust statistics] [1]] [3]._|5KAs
this method employs subgradients in the minimization pssce
Wirtinger's Calculusis further extended and the notion o
the Wirtinger's subgradients is introduced. To the bestwf o
knowledge, this is the rst time that this notion is develdpe
the respective literature, and its value goes beyond theicur
context of APSM and can be used in any optimization tas
that involves subgradients in complex spaces.

égr allc, 2 F,n=1;:::;N, where the notation denotes
)tpé conjugate elemerind " the Hermitian matrix, is called

de nite Gram matrixK , is called aPositive De nite Kernel
n the following, we will frequently refer to a positive deite
kernel simply akernel

Next, consider a linear class of complex valued functions,
f, dened on a setX. Suppose, further, that iRl we can
Qe ne an inner produch; iy with corresponding norm ky
and thatH is complete with respect to that norm, i.el,is a

The paper is organized as follows. In sectigh II, the ma ilbert space. We calH a Reproducing Kernel Hilbert Space

properties of RKHS are presented and the differences batw BKH_S) if the_re exists a functi(_)n _: X X1 Fwith the
real and complex RKHS are highlighted. In sectlon 1lI, th pllowing two important properties:

main characteristics of the recently developed Wirtingeel- 1) For everyx 2 X, (;x) belongs toH.

culus in complex RKHS are brie y sketched, before the notion 2)  has the so calleceproducing propertyi.e.,

of Wirtinger's subgradients for real functions of complex PN . .
variables is introduced. Applying this newly developedItoo PO =1 (Gx)in; forall f 2H;x 2 (1)
we compute the subgradients of thénsensitive versions of in particular (x;y)=h (;y); (;X)in.
several popular loss functions (e.ts, |1, Huber). The com-

plexi cation and the pure complex kernelization procedure 'The term(Knm )N denotes a squatd N matrix.
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It has been shown (seé_]25]) that to every positive def- I1. WORKING ON COMPLEXRKHS

inite kernel there corresponds one class of functidis

A. Wirtinger's Calculus on complex RKHS

with a uniquely determined inner product in it, forming a

Hilbert space and admitting as a reproducing kernel. In
fact, the kernel produces the entire spade, i.e., H =
sparf (x;)jx2Xdd. Themap : X ' H : (x) =

(;x) is called thefeature mapof H. Recall, that in the
case of complex Hilbert spaces (i.E.= C) the inner product
is sesqui-linear (i.e., linear in one argument and angline
the other) and Hermitian:

haf + bg;hy = aif;hiy + bhg; hig;
hf;ag + bhiy = a H;giy + b hf;hig;
H,giy = hg;fiy;
forallf;g;h 2 H,anda; b2 C. In the real case, the condition
(x;y) = h (5y); (;x)in may be replaced by(x;y) =

h (;x); (;y)iu. However, since in the complex case the

inner product is Hermitian, the aforementioned conditien
equivalent to (x;y) =(h (;x); (;y)in) .

Although, the underlying theory has been developed by t
mathematicians for general complex reproducing kerneds
their associated RKHSs, it is the case of the real kernets t

has been considered, mainly, by the Machine Learning ap

Wirtinger's calculus [[65] (or CR-Calculus) was brought
into light recently [27]-[29], [[31], [[56], [[57], as a means t
compute, in an efcient and elegant way, gradients of real
valued cost functions that are de ned on complex domains
(C ). Although these gradients may be derived equivalently
in the traditional way, if one splits the complex variables t
the real and imaginary parts and considers the correspgndin
partial derivatives, Wirtinger's toolbox usually requrenuch
less algebra and involves simpler expressions. It is bagsed o
simple rules and principles, which bear a great resemblance
to the rules of the standard complex derivative, and it ¢yeat
simpli es the calculations of the respective derivativégse
are evaluated by treatingandz independently using tradi-
tional differentiation rules. In[[19], the notion of Wirgyer's
calculus was extended to general complex Hilbert spaces,

roviding the tool to compute the gradients that are needed
Fo develop kernel-based algorithms for treating completa.da
This extension mainly uses the notion of tReechet differ-
}%ﬁtiability, which is a path to generalize differentiability to
eneral Hilbert spaces. In this section, however, we give a
jef description and thus we do not get into much details
out Fréchet differentiability. The interested readeymd

Signal Processing communities. Some of the most widely usl%%re on the subject if [19]. [58]

kernels are thé&aussian RBFi.e.,
|

d 2"
(X
ri(X;y) =exp K T ( X Yi) ; (2)

We begin our discussion with some basic de nitions. Let
X R.Dene X2 X X R? andX = fz =
X +iyjx;y 2 Xg C , which is equipped with a complex
product structure. LeH be a real RKHS associated with
a real kernel dened on X2 X2 and leth; iy be its

. d . .
denedforx;y 2 R, where isafree posT|t|vedparameter andyorresponding inner product. Note that, under the mapping
the polynomial kernel 4(x;y) = 1+x'y ~, ford2 N, q%(;y) Iz =x+iy, X2 is isomorphic toX (under the same

where T stands for the transpose matrix. Many more kern
emerging from various aspects of mathematics (ranging fo

apping,R? is isomorphic toC). Thus, every real valued
™ H can be regarded as a function de ned on eitker or

splines and wavelets to fractals) can be found in the relatgd e f(z) = f(x + iy) = f(x;y), forz = x + iy. Next,

literature [1], [2], [4], [53].

we deneH?=H H . Itis easy to verify thaH? is also a

Complex reproducing kernels, that have been extensivglilbert Space with inner product

studied by the mathematicians, are, among othersSttego
kernels i.e, (z;w) = ——, for Hardy spaces on the unit
disk, and the Bergman kernels, i.e.(z;w) = m
for Bergman spaces on the unit disk, whéeg jwj < 1
[52]. Another important complex kernel, that has remain

b giye = My gy + M2 Gin; (4)

for f =(f1;f2), g =(0:;02). Our objective is to enricti 2
with a complex structure. To this end, we de ne the RKHS
= ff = 1+ if »jf1;f2 2 Hg equipped with the complex

relatively unknown in the Machine Learning and Signal Pronner product:

cessing communities, is ttomplex Gaussian kernel
|

P d :
k=1 (zx Wk)2

Cco(z;w) = exp 5 )

dened onC? CY, wherez;w 2 CY z, denotes thek-
th component of the complex vectar 2 CY and exp is

the extended exponential function in the complex domai

Its restriction = ;cd re ge IS the well knownreal
Gaussian kerneZ). An explicit description of the RKHSs of
these kernels, together with some important propertiesbean
found in [54].

2The overbar denotes the closure of the set.

W gin = e 01in + Wo Qi + 1 (M2;0uin hf0in):

Similarly to the case ofX? and X, under the mapping
(f1;f2) ! f = fq+ if,, H? becomes isomorphic tHl.
Consider the functiom : A H! C, T(f)= T, (f)+
iTi(f ) de ned on an open subsét of H, whereus ;v 2 H,
= us +iv¢ andT,;T; are real valued functions de ned on
H?2. Due to the isomorphismR?' C andH?' H, we may
equivalently write:

T(F)=(Te(ur;ve ) TiCur ;v )T (5)
or
T@)=T(us +ive)= Te(us;ve)+ iTi(ur;ve):  (6)
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Based on the isomorphism betwekit andH, two types B. Wirtinger's Subgradients

of differentiability may be considered. In the rst case, gjnce subgradients of operators, which are dened on
if we r;lp|ply tr21e notion of the Fréchet differentiability onjinert spaces, play a crucial role in several parts of thisa,
T :H®! R® @), we may dene the derivative oT at jjsimnortant to present their formal de nition. For realiued

¢ =(uc;vc) and the respective gradient, i.e.T (C), as well oo ex functions, de ned on real Hilbert spaces, the graidie
as the partial derivatives of atc, r yT(c) andr yT(C). 4ty  satis es the well known rst order condition:
If r T(c) exists, we will say tha@ is Fréchet differentiable

in the real senseOn the other hand, applying the notion of T(z) T(xo)+ hrT(xo);z Xoi;

Fréchet differentiability onlT : H! C (@), we may de ne ) » ] ) )
the complex derivative of atc = ug + ive, i.e., dT (c). for all z. This condition has a simple geometric meaning when

In this case, ifdT (c) exists, we will say thafl is Frechet | IS Nite at Xo: it says that the graph of the af ne function
differentiable in the complex sensdowever, the notion of N(2) = T(Xo)+ hr T(xo);z Xoi is a non-vertical supporting
complex differentiability is rather strict and it excludée case "YPerplane to the convex sepiTH at (xo; T(xo)). In other

of real valued functiond (these, as it can easily be shown, d4/°rds, (a)h(z) de nes an osculant hyperplane of the graph
not obey the Cauchy-Riemann conditions), which are pres@ftT at (xo; T(x0)) and (b) all the points of the graph of
in all optimization tasks (taking the form of cost functipns | lié at the same side of the hyperplane. Moreover, it is
The goal in this work is to employ Wirtinger's calculus as a¥/€!l known that, in optimization tasks, the gradient dir@ct
alternative tool for computing derivatives. Wirtingeralculus, 9uarantees a path towards the optimal poinit. 1§ not Fréchet
although based on the Fréchet differentiability in thel redifferentiable atx, we can still construct such an osculant
sense, exploits the complex algebra to make the compugatiGifPerplane (and a corresponding path towards the optimal
easier and the derived formulas more compact [19], [58]. PCinY using the subgradient.

De nition 2. LetT : H! R be a convex function de ned
on a real Hilbert spaceH(, h; iy ). A vectorx@2 H is said
to be asubgradientof T at xg if

CTE= 20T irT(O) ™ T@ Too+ M@z xgin: (10)

De nition 1. We de ne theFréchet Wirtinger's gradien{or
W-gradientfor short) of T atc as

-1 (r o i () + r yTi(c) + ! (r uTi(c) r T (C); The set of all subgradients af at x is called thesubdiffer-
2 2 ential of T at X and is denoted by®Txo).
and the Fréchet conjugate Wirtinger's gradienfor CW-

gradientfor short) of T atc as The notion of the subgradient is a generalization of the

classical differential of a functioi, atx o, and it has proved
itself an indispensable tool for modern optimization tasks
which involve objective functions that are not differebia
[47], [59]. In the case of real-valued objective functiotise
use of the subgradient has shown a very rich potential for

Remarkl. The rationale that underlie_s these particular de njﬁa&ngﬁdﬂnggg gggm:s;gg itnastEse, ceo%x[tl if

tions becomes apparent if one considers the Taylor expan 9 horms in the framework of compressive sensing.

formula of T. In [I9], it is shown that It is clear that de nition[2 cannot be applied for complex

valued functions, as it involves inequalities. Neverths|eour

H ©) objective is to introduce a Wirtinger-like subgradient the

special case of a real functioh : H ! R. Suppose that
rsT(c)=(r ST(c);r \S,T(c))T is a subgradient of atc =
:c,)T, if we consider thafl is de ned onH? instead of

. Then the following inequalities hold

fTE)= (TR i T () ®

=SEUTE T T ST+ T (o)

T(c+h)=T(c)+ % h:(r uT(c) ir vT(C))
+ % h(ruT(c)+iryT(c)  + olkhky):

The main rules of the generalized calculus can be foung
in [19]. In view of these properties, one might easily congput
the W and CW gradients of any complex functibnwhichis ~ T(c+ h) T(c)+ hh;r ST(C)in:
written in terms off andf , following the following simple hy r ST(c)
tricks: T(c)+ A gT(c)

v \Y H2
. S H . S H .
To compute the W-derivative of a functidn T Mot (O + thvir o T(e)in: (11)

which is expressed in terms bfandf , apply This will be our kick off point for the derivation of the
the differentiation rules considerin§ as a respective Wirtinger-like subgradients.
constant.

De nition 3. To be inline with the de nition of Wirtinger

To compute the CW-derivative of a function gradients, we de ne th&\Virtinger subgradienof T: H! R

T, which is expressed in terms 6f and f ,

apply the differentiation rules considerirfg as 3epi T denotes the epigraph df, i.e. the seff (x;y) : x 2 H;y 2 R :
a constant. T ve
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atc=c¢, +1i ¢ as this paper, we exploit its use to derive the necessary stibgra
1 _ dients in the context of the Adaptive Projected Subgradient
riT(c) = S (1 at(e) i riT(e); (12) Method.

and theconjugate Wirtinger subgradierdf T atc as
C. Mapping data to complex RKHS

1
S — S H S .
ri T(e)= E(r JTE+T 1yT(): (13) This paper considers the case of supervised (regression)

learning, i.e., the scenario where a sequenge2 C , of

The set of all conjugate Wirtinger's subgradientsToft ¢ is Co”?p'ex input data, and a sequende 2 C’. of complex
called theWirtinger subdifferentialof T at ¢ and is denoted desired responses, are available to the designer. No assump
by @ T(c) tion is made on the stochastic processes hidden behind the

sequencéz,;d,)n o. Moreover, the stochastic properties of
Under the scope of the aforementioned de nitionshas=  both (z,)n o and (d,), o are susceptible to change as

for any ordinary subgradientST(c) of T atc = (cy;c,)7.

h+h_andh, = ", one can easily prove that grows larger. In the supervised learning scenario, oneijlyi
thir ST(C)inz =Mhu;r ST(C)in + thyir ST(C)in gstlmates_ the output ad, = D ,(z(n)), V\_/hereDn are
o . o . time-varying sequences of complex functions, so that the
=thi(rgT(c)) in+th ;(r¢ T(c) in  “disagreement’ betweem, and d,, measured via a user-
=2< hh;(r §T(c)) in : de ned loss function, i.e.J(d, d,), obtains some small

value. The choice of the space, whddg, lives, determines
the accuracy of the estimation. For example, in a typical
T(c+h) T(c)+ h;(r $T(c)) in+hth ;(r§ T(c) in: CLMStask,D, areC-linear functions, i.e.Dn(z) = whz,
(14) for somew, 2 C , while in a typical widely linear LMS
) (WL-LMS) task they take the form dR-linear functions, i.e.,
or equivalently Dn(z)= wHz+ vHz | for somew,;v, 2 C [62]. In the
T(c+h) T()+2< M:(r$T(C) iy : (15) mac_hi_nery presented in this paper, are non-linear functions
implicitly de ned by the speci ¢ choice of the complex RKHS,
Relation [I#) can be thought of as a type of Wirtingeyhere the input complex data, are mapped.
subgradient inequality (i.e., an inequality similar {010 We can perform such transformations either by employing
de nition B). At this point, we should note, that although weyure complex kernels, or via traditional real kernels, as it
de ned two types of Wirtinger subgradients, in order to b@as been substantiated {n [19]. For the rst case, which we
consistent with the de nition of Wirtinger gradients, ondyie  will henceforth callpure complex kernelizatioprocedure, the
will be used (ther § T(c)) in the subsequent sections, as thghoice of a complex kernelc implicitly de nes the complex
second subgradient, § T(c), is r § T(c)'s conjugate. The RKHS H, where the data are mapped. The transformation
following Lemma is an extension of the one presentedin [6Xom input spaceC to the complex RKHS takes place via
Theorem 25.6: the feature map (z) = ¢( ;z) of H. Thus, the input/output

Lemma 1. Let| :C | R be a convex continuous functionraining sequencgz; d,) is transformed t¢ (zn);d»). The

Also, letX (c) be the set of all limit points of sequences gf&ming phase is taking place in the transformed data.

the form (r ¢ 1(zn)),,p Where (zn)nan is @ sequence of As an alternative, we ann e_mploy popular \_/veII—_estabhshed
points at whichl is Frechet differentiable in the real sensg©@! kernels de ned orR® , using thecomplexi cation pro-
andlimnu  zn = c. Then, the Wirtinger subdifferential of cedurel[19]. In this case, the induced RKiSis a real one.

at ¢ is given by@ 1(c) = conv(X (c)), whereconv denotes However, we can de nél? and enrich it with a complex struc-

the convex hull of a set, and the overline symbol stands o€ i-€., construct the complex RKHS$, as it is described
the closure of a set. in details in sectiofi . IIIzA. Note that in this case, whitkis a

complex RKHS, its “generating” kernel is a real one, i.&,
Proof: Observe that the conjugate Wirtinger subgradieRte map the input data tbl using the following simple rule:
is given byr ? I(c) = %(r al(e)+ i rjl(c)), while the A . A _
Fréchet subgradient obtained if we consitie) de ned on (z)= "(x+iy)= "(x5y)= ( x;y)+i( x;y); (16)
R2 isr SI(x;y) =(r SI(x;y);r SI(x;y))". Similar results . .
hold for the Wirtinger gradient and the Fréchet gradient Where _IS th_e featyre.map of the real reproduqng kerQeI
Le., ( xX;y) = Rr(;(X;y)). It must be emphasized, that

| is differentiable atc. This implies an 1-1 correspondence : )
between the conjugate Wirtinger subgradiesit I(c) and the is not the feature map associated with the complex RKHS

Fré . Si/w . e Note that we cannot choose to map the input data tél, if
rgchet subgrad|en§r .I(x,y). A_S|mllar cqrrespondence we want to exploit the complex structure df as doesn't
exists petween th_e conjugate Wirtinger gradle_mt I(c) and have an imaginary component.

the Fréchet grad|en§r I(x;y). Hence, applying Theorem

25.6 of [61] gives the result. [ |

Remark2. We emphasize that the de nition of the WirtingerP- Linear and Widely Linear estimation in complex RKHS

subgradient is a general one and it can be employed whenevdfollowing the mapping of the input training data to the
a functionT is not Fréchet differentiable in the real sense. lnomplex RKHS, a linear, or a widely linear estimation fuonti

Therefore, from[(T]1) we obtain
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is employed. Thus, after the pure complex kernelizatiom@ro To complete the presentation, we compute the Wirtinger
dure, we adopt the time adaptifelinear (in RKHS) estima- subgradients ok ., (w;Vv) for some popular loss functiors
tion functionD ,(w;Vv) = h (zn);wiy+h (z,) ;viy,. This First comes a popular example.
is inline with the widely-linear estimation rationale [2980], o . .
where both the original data and their conjugate analogee %Tremma 2 (Q“ad“"?“?z"”sens'“ve IOS.S funcﬂon)Choose the

. I - 2 horm, lI,(z) = jzj4, as the functionl in (@8). Then the
taken into account. The objective of the proposed machuserM : : . . .

. . . : . irtinger's subdifferential oL ., is given by
to estimate, in an adaptive manner and at each time instance, ’

the values ofv andv so that the “disagreement” betwedn 3 f e (zn)g; if jenj? >

andD n(w; V), measured via a user-de ned loss function, is @, L o (Wiv) = fOg; if jenj? <

minimized. However, note that both, v live in the complex " convf0; e, (zn)g, ifjenj?=

RKHS H. (19)
On the other hand, for the complexicgtion techgique,

the C linear estimation functioD ,(w) = " (zn);w and 8

is employed, as this procedure implicitly adds a conJHugate < f e (g if jenj? >

component to the adopted model. @ Ln(w;v)=, fOg; if jenj? <

" convfO; e, (zn)g, ifjenj?=
E. Selecting the Loss Functions (20)

The strategy for constructing loss functions for the onlingheree, = d, D,(w;v) and is the function used to map
learning problem, which is employed in this work, containghe input data toH.

three steps.
1) Ch(?ose any convex continuous loss functiolC ! R Proof. If we choose thel; norm as the functior in
y Co ([@3), thenl ., (w;v) = maxfO;jy,  Dn(w;v)j> g Let

The functionl needs not be differentiable. The only re-

quirement is for its Wirtinger subgradients to be knowr(?n (W;v) = Yo Da(w;v) measure the. error between the
) . ter output d, and the estimation function (in many cases
in analytic form.

2) Form an -insensitive version of following the rule: € (W V) S sump_le denoted a&, to save space). We compute
the subdifferential case by case.

I (z) :=max f0;I(z) g; forallz2 C;  (17) 1) Consider the case of @v;v) such thate, (w;v)j2 >

where 0 takes a predetermined value. . Then L n (w;v) = jdn  Dn(w;v)j? =
3) Given a linear or widely linear kernel-based estimation |2 &(w;v) . It can be easily veried that, as
function D, (w;v) and a given pair of training data l2(2) = jzj* = z z, its conjugate Wirtinger's gradient is
(zn:dn) 2 C  C, de ne the loss functiof. . (W;V) : r, l(z) = z. Further_m_ore, applying rules (4) and (5_)
H! R, as follows: ' of the generalized Wirtinger's calculus_[19] we obtain
rw en(w;v)= (zn)e,(w;v) andr y ey(w;v) =
Lin(w;v)=1(yn Dn(w;v)); (18) (zn)e,(w;V). The result follows from the chain

rule property of Wirtinger's calculus.

Next, consider the case of 4w;v) such that
jen(w;Vv)j> < . ThenL ., (w;Vv) = 0 and the result

is obvious.

3) Ifa(w;v) is given, such thage, (w;Vv)j? = , thenL .,

is not differentiable a{w;Vv). The result follows from
Lemma[l, as for any such point we can nd a sequence
of pointsf (W ; Vim)dm2n converging to(w; v), where
(Wm;Vm) is chosen so thate,(Wm;vm)] &  (i.e.,

L ., is differentiable afwm;vm) for all m 2 N).

forall w;v 2 H.

A few comments are in order on the reason behind thez)
introduction of the -insensitive version of. The functionl
aims to robustify the online learning task against inaceura
cies, noise, and outliers. Given a learning task, the design
chooses, usually, a convex loss functibrwhose minimizers
are envisaged as the solutions to the learning task at hand.
However, it is often the case that the choicelofloes not
t accurately the underlying model and noise pro le, due to
various measurement inaccuracies and the presence areutli
To tackle such an unpleasant situation, we adopt here the u
strategy of enlarging the set of minimizers bf without It is, by now, well-documented| [63], that tHg norm is
changing radically the shape of since we would like to not the best choice for a loss function in environments where
adhere to our original intuition on the choice bf This is the noise is non-Gaussian. In order to build a general scheme
achieved by the introduction df. To see this, in a more which can accommodate any kind of noise and outlier pro les,
rigorous way, assume that 0 and | are chosen such the present section gives freedom to the designer to choose

that min,» ¢ [(z) . Notice that such an assumption i€y convex objective functiom. To support this approach,
not tight, since, in most cases, the Idsg& chosen to be a We provide a couple of examples, which depart from the
nonnegative function, with(0) = 0. Then, it is easy to verify classicall, norm strategy. The next examples are motivated
that (i) argmin,, | (z) = fz 2 C : 1(2) g, and (ii) by the recently overwhelming popularity of thhe norm as a
argmin,,cl(z) argmin,,c ! (z). The -insensitive ratio- robustness and sparsity-promoting loss function, [63].

nale is also in agreement to the robust statistics’ framkworemma 3 (I, -insensitive complex loss functionChoose the
[51). complexl; norm,l1(z) = jzj, as the functiorl in (I8). Then



IEEE TRANSACTIONS ON NEURAL NETWORKS 7

8 n _ o
3 Sns(en) 4 SC(D  (zp) ;o if < (en)i + = (en)i >
@ L (w;v)= n _ f0g; o ifi<(en)ji+j=(en)j<
Zeonv 0; HUsCen)) yoson(Z(en)) 7y ;o if j<(en)j + = (en)] =
8 n _ S 0
3 son(slend) o SOCZlend (zp) ;i j<(en)i+ = (en)i >
@ Lin(w;v)= n _ f0g; o fj<(en)i+ j=(en)j<
Pconv 0;  Senlslend y SenCSLe) oz it < (en)j + = (en)i =
TABLE |
THE SUBDIFFERENTIAL OF THE|1 “REAL" LOSS FUNCTION WHEREEen = dn Dn(W;V) AND IS THE FUNCTION USED TO MAP THE INPUT DATA TO
H.
8 f0og; ifO0 j enj<
% conv 0; 3e, (zn) if jenj =
1 ! . ni-
oy se, (zn) ; if < jenj<
@ Lin(w;v)= convn AZ (”Z ) le (2 )0. T
% Zhen ] n), 25N n , Jén) =
sely (2n) if jenj >
8
f0g; if 0 j enj<
% conv 0; %e, (zn) if jenj =
@ L (w;v)= n e (2n) o If <lenj<
; gconv 2;—] (zn); %% (zn) ;  ifjenj=
ZJZ—J (zn) ; if jenj >
TABLE I

THE SUBDIFFERENTIAL OF THEHUBER LOSS FUNCTION WHERE€, = dp Dn(W;V) AND IS THE FUNCTION USED TO MAP THE INPUT DATA TOH.

the Wirtinger's subdifferential ok ., is given by Proof: For the rst case, observe that if(av; V) is given
8 n o such thatj<(z)j + j=(2)j > , thenL ;5 (w;Vv) = j<(d,
2 e (z0) if jenj > Dn(w;Vv))j+j=(dn Dn(w;v))j =11 en(w;v) .As
@ Lan(w;v)= n fOg o ifjenj< (21) ) o . _ _
Toonv 0 pE- (za) ;5 ifjenj= 11(2) =< (2)j + |= (2)j = sign(<(2))<(2) + sign(=(2))=(2)
! . Z+ 7 , z z
and =sign(< (2)) = — + sign(=(2)) =5
8 n o] ) o )
3 z,ee—, (zn) ; if jenj > its Wirtinger's gradients are
Lo (W;v)= fog; if jen] . o
@ bt n ek o M= e SIEE) , SonE@)
- conv O; o] (zn) ; ifjenj= . zhh 2 2 ,
©2 . SigNE()  signE(2)
_ _ r, li(z)= .
wheree, = dy  Dn(w;Vv) and is the function used to map the 2 2i

input data toH. . .
The result follows from the chain rule of the generalized

Proof: For the rst case, observe that if @v;Vv) is wjirtinger's calculus and Lemmi@ 1. For the other two cases,

given SU(_:h thage,(w;v)j > , thenL ,, (w;v) = jd_n we work as in Lemma&]2. m
n(W;V)j = hhoe(w;v) L Asi(z) = jzj = _ g ,
z z, its Wirtinger's gradients are ,11(z) = ﬁz and Lertr)]ma: 5 ( -insensitive Huber loss function)Choose the
Huber loss,

r,li(z) = 2'%,‘2 . The result follows from the chain rule
of the generaiized Wirtinger's calculus and Lemipda 1. For the 1izj2 if jzj <
other two cases, we work as in Lemida 2. n In(z) = N ;
(zi 7)) ifjzj
Lemma 4 (I, -insensitive “real” loss function)Choose the
“real” 17 norm,1}(z) = j<(2)j + j=(2)j, as the functior in
(I8). Then the Wirtinger's subdifferential &f., is given in

table[]. Proof: We work similarly to lemmagl2 ard 3. [ |

as the functior in (I8), for some > . Then the Wirtinger's
subdifferential ofL ., is given in tablell.



IEEE TRANSACTIONS ON NEURAL NETWORKS 8

IV. CoMPLEX KERNEL ADAPTIVE PROJECTED @ L x(Wp;vp). Thus, a collection of Wirtinger
SUBGRADIENT METHOD (CKAPSM) subgradients is formed:
The algorithmic scheme, which will be developed in this fW n =135 Lx(Wn;Vn)Okas, and
section, is based on thédaptive Projected Subgradient v R L ’ . "
Method (APSM) [44]-[46], [50]. This has been motivated #n =0y Lac(Wniva)Geas o -
by projection-based adaptive algorithms, e.g., the Nozedl  4) Dene the active index set, := fk 2 J,
LMS and the Afne Projection Algorithm (APA)[[64]. The rs Lay(Wn;vn)60;0rrS Ly (wWn;vn) 6 0g.

APSM has been successfully applied to a variety of onlinesy |t & ; dene a set of weights! Mg, (0;1],
learning problems/]9]/112]/[50] and has been very regentl
generalized to tackle constrained optimization tasks megs
Hilbert spaces [46]. In order to speed up convergence, APSM
concurrently processes multiple data points at every time
instant. Given a user de ned positive integer for every
time instantn, APSM considers a sliding window on the
time axis of size (at mosty J, := maxfO;n qg+1g;n.

suchthat , !{" =1.Each parameter(" assigns
a weight to the contribution of .x to the following
concurrent scheme. Typically, we 39,&”) =1=cardl ,
forall k 21 , (card stands for the cardinality of a set).

6) Calculate the next estimate wf; v using the following
recurrent scheme:

_ . ; _ P (N Lk (Waiva) :
Eachk 2 J, associates to the loss functidn, , which, Wh+1 = Wh n ka2, U W ik s
in turn, is determined by th&-th training data point (e.g. Visl = Vi N oo ! IEH)LMZS)VAV won
n kn v

(Xk;Yk))- The setl, indicates the loss functions that are going (24)
to be concurrently processed at the time instanEor a real
data sequendg(Xn; Yn)9h=; , APSM then employs the update whereU xn = KW yn K2+ KV e K2,
mechanism: Equations [[Z¥) have been developed directly from the
_ X L (wn) s ~ traditional recurrent scheme of the real case, i.e., miati
Wna SWaon sk’ Bk (Wndi @3y by substituting the real subgradients with the newly
k2l n ' 23) introduced Wirtinger subgradients via the rationale depet
in the proof of Lemméll. Loosely speaking, one can replace
whereL  (wp) is the loss function betweeyx and the esti- the real (partial) subgradiemtS, L . (w;Vv), that is obtained
mation functionDg (w) (which is chosen in a manner similarif L . is considered as a function de ned ¢t H 2, with
to sectiorII[-E, i.e.,Dx(w) = h (xx);wi), r SLx (wn) is  2r § L« (w;V). In the case wheré, = ;, the summation
a subgradient of x atwn, n is gn extrapolation parameter.term over; will be set equal td. The extrapolation parameter
1 (" are weights chosen such that, ,, ! (M =1 andl,is n lieswithin the interval0;2M p;), whereM , is given in
an appropriately chosen indexfét, J ,). The interested (26). Notice that, due to convexity &f k2, it is easy to verify
reader may dig deeper on this algorithmic scheme by refgrrithatM , 1. For larger values of the user-de ned parameter
to [12], [60]. In this section we develop a similar machinerg, M , typically grows far from 1. We typically choose, as
for complex data sequences using the newly introducedmotio XM, 005 ifM, 2

of Wirtinger's subgradients. n = (25)

min(M ,; o) otherwise,

A. The CKAPSM Algorithm \Lxlv)here o Is a user de ned parameter (typically between 1 and
We develop the algorithm for a general widely linear gyiding upon the aforementioned algorithmic scheme, two
estimation functionD, (w;v), as this have been de ned inyegjizations of theomplex Kernel Adaptive Projected Subgra-
section[I-D. For aC-linear estimation functiorDn (W), dient Method(CKAPSM) have been developed. The rst one,
simply ignore thev,, term. which is denoted as CKAPSM, adopts the complexi cation
1) Choose a non-negative 0 and a positive number trick to map the data to a complex RKHS using any real kernel.
g, which will stand for the number of loss functionsMoreover, theC-linear functionD,(w) = h"(zn);win is
that are concurrently processed at every time instant employed to estimate the Iter's output. The second aldorit
Furthermore, x arbitrarywo andv, as a starting point which is denoted astugmented Complex Kernel Adaptive

for the algorithm (typicallywo = vo = 0). Projected Subgradient MethgdCKAPSM), adopts the pure
2) Given any time instanh 2 N, dene the sliding complex kernelization trick to map the data to a complex
window on the time axis, of size at mogt J, = RKHS using the complex gaussian kernel. In the latter case,

maxfO;n g+ 1g;n. The user-de ned parametgrde- to estimate the lIter's output, the widely linear (augmedtte

termines the number of training points (and associatéghctionD,(w;Vv) = h (z,);wig+ h (z,);Viy is used.

loss functions) that are concurrently processed at each

time instantn. Co
3) Given the current estimatesw,, V,, choose B. Sparsi .cat|0n . . )

any Wirtinger subgradientr $ L4 (Wn;Vn) 2 Any typlcal ke_rnel-based adaptive Iterlng algorlthm, suf

@ Lax(Wnve) and 1S Ly (Wnvn) o fers from increasing memory and computational requiresjent

as a growing number of training points is involved in the

4It will be de ned later in sectiof TV-A. solution. This is veri ed by the celebrated Representeothm
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P I(n)Lz;k (Wnivn)
K2l n ok AUy .
(n)Lk(Wn Vn)W 2+ P p () Lk (Wn§Vn)V 2
k2l o ! 20 4 kin k2l n "k T 20 4, Y ki

k2|n'l(<n)%w kn 60; (26)
(M) Ly (Wn3vn) .
% k2|n!k k2uk =V ;kin 60,

1; otherwise

[65], which states that the solution of such a task lies in tHer everyk 2 maxfO;n g+ 1g;n, which is inside the active
nite dimensional subspace of the RKHS, which is spannesktl ,, we employ the update equation:
by the mapped training (real) input data points, i.e.,

K 1 a®w = a4 1 ﬁ”)wck,
Wn = a (Xk): o

k=0 whereal®™ = 0 and Cy is the coefcient of ( z) in the
In our case, where complex input training data are consijereespective gradient®V 4., andV .., B. Consequently, the
this is equivalent with norms ofw,+; andv,+; are computeﬁjand if they are found

o 0 larger than , each one of then + 1 coefcients of A, is

W, = ax (zk);vn = ax  (zk); (27) shrunk by the factor— and/or .[— respectively. If,
k=0 k=0 after multiple shrmks some of the coefments become Iseal

if the widely linear estimation rationale is adopted, asait e SMall (i-e., smaller than a prede ned threshold), they are
easily veri ed by the gradients of the loss functions coesati thrown out of the stored memory.
in sectio1II-B (where is the function used to map the input
data tOH for k = O """ yn, andak 2 C) V. EXPERIMENTS
In this paper, to cope with this problem, we focus on the
projection onto closed, balls rationale, introduced in[12], The performance of CKAPSM and ACKAPSM has been

i.e.,B[0; ] on the optimization scheme. That is, we rep|aC@quaI|zat|on task of a QPSK modulation scheme. In all the
the recurrent step of the algorithm with experiments, the parameters of the tested algorithmicnsebe

I were tuned for the best performance (i.e., to achieve the

p(n) Lk (Wn;Vn) smallest possible MSE). The code for the experiments can

Wn+ = Pep;p Wno o o 'K o0, n Whin 5 pe found af http://users.sch.gr/pbouboulis/kerneld.htm
" !
- , (m Lk (Wnivn) _
Vas1 = Peo;p Vo on M 2U 4o Vikn 5 A. Channel Identi cation
k2l

We consider the non-linear channel presentedin [28], which

wherePg 0.1 is the metric projection mapping onto the closegOnsists of a linear lter:

ball B[O; ] , which is given by

X
_ f: if kf k ; th = hg s ;
PB[O;] (f)— mf, if kf k> n - k n k+1
Let us, now, turn our attention on the weights update stagéere
(i.e., equations[(24)) and discuss on how they are praktical 2 (k3 2 (k3
implemented on a machine, as bethandv are elements of hx =0:432 1+cos ——— 1+cos —710 '
an in nite dimensional RKHS. After the receipt of the th
sample, bottw andv have a nite representation in terms of for k = 1;:::;5, and the nonlinear componer} = t, +
(zx) and  (zk) respectively, fork = 0;:::;n 1, (see (0:15 O: 1|)t2 At the receiver end of the channel, the signal
(21)). Thus, one needs to store into the machine's memory
only the n coefcients, ag;as;:::;an 1, of the expansion. °For example, if theo norm has been choseGx = e, as equation

LetA, 1= fag;as;:::;an 19 be the set of the coef cients ﬂ-%) suggests. _ , _
hat has been stored at iteration 1. Next, as ther-th sample ., drect computation of the normkwn.1k is a computation-
tha : ’ p ally demanding step. However, as in the present context anlel-

has been received, equatiofs](24) update at mpost of the ements of the expansion ofv are updated, we can compute the
coef cients in A 1 (the ones that are inside the active setf°"? Kwns1 ko using a recurrent scheme. For example, df =

d bl t d t th f t fth hen Wn+1 = Wn + an+1 P(Zn+l) Then kWn+lk =
and, possibly, compute and store the coef ciant (if this is Wi Wt 1 = kwnk? + aner | Bog a0 ()7 (Znen)in +
inside the active set, otherwisg is set t00). In particular, a,.; -, ah (zn+1); (@K)in+h (Zn+1); (Zn+1)in.
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iS Corrupted by Whlte noise and then ObSGI’VEd’,& The or | Non linear channel Identification I.G.st.nc.huber
input signal that was fed to the channel had the form NCKLMS
ol ANCKLMS
Sn = P 1 2Xp+iY, ; (28) al iéﬁ/P\I?\SAMQQES
where X, and Y, are gero-mean random variables. This g 6l
input is circular for = = 2=2 and highly non-circular if 2
approaches 0 or 1[28]. The aim of the channel identi catior = ®
task is to construct a non-linear lter that acts on the ingut " ol
and reproduces the outpxt as close as possible. To this end,
we apply CKAPSM and ACKAPSM to the set of samples A2y
14 ‘ ‘ ‘ ‘
((sn;Sn 1;:::5Sn L+1):Mn); 0 2000 4000 6000 8000 10000

whereL > 0 is the lter length. To measure the closeness of
t between the original non-linear channel and the estirdatesg. 3. Leaming curves for NCKLMS (= 1), ANCKLMS, ( = 1=4),

Iter, we compute the mean square error between the estinmateKAPSM and ACKAPSM (lter lengthL = 5) for the nonlinear channel

lter's output ie. d.. andx identi cation problem with gaussian input and heavy-tdiltudent noise (=
e EN ne . . . 3)) at 20dB, for the non-circular input case € 0:1). In the realization of

We tested CKAPSM and ACKAPSM using various inpuihe CKAPSM and ACKAPSM the Huber loss function was employed.

random variables (e.g., gaussian, uniform) as well as some
popular noise models (e.g., gaussian, uniform, studemnt, im
pulse) and different types of loss functions. Their perfance ~ The reason behind the improved performance of the APSM
is compared with the recently developed NCKLMSJ[19Yariants, over the Normalized LMS ones [19].][62], is due
and ANCKLMS [62], which have been found to perfornto the form of the iterations given il (23) and {24). In the
signi cantly better [19] than other non-linear complex atige NLMS framework, one pair of training data is processed per
algorithmic schemes, such as Multi Layer Perceptrons (MLP&me instantn, while the APSM gives us the freedom to
[28] and Complex non-linear Gradient Descend (CNGD) [27¢oncurrently process a set of training data, indicated by
In all of the performed tests (and especially in the nonwtac  8n. To each data pair, that belongs ltg, a weight! lﬁ”) is
case), CKAPSM and ACKAPSM considerably outperform thassigned to quantify the signi cance of the specic pair of
other two algorithms in terms of convergence speed andsteatata in the concurrency scheme. Such a weighted contributio
state mean square error. Figulgs[1,[B, 4, show the mexm set of training data helps APSM to achieve, in most of
learning curves over 300 different sets of 10000 samples fible cases, lower error oors compared to NLMS techniques.
each case. Even further, due to the multiplicity of data that are usliz

In order to study the tracking performance of the proposéd parallel, an extrapolation parametey is de ned, which
schemes in a time-adaptive setting, the case of a non-linean signi cantly speed up convergence, since it obtaingesl
channel that undergoes a sudden signi cant change is consid 2. Recall that in the NLMS framework[ [19][[62], the
ered in FiguréR. This is a typical scenario used in the cdnteassociated extrapolation parameter is upper boundet! Byr
of adaptive Itering. After receiving sample = 5000, the a more detailed discussion on the superior performanceeof th
coef cients of the nonlinear Iter become: NLMS variants versus the MLPs 28] and the CNGDI[27], the

h =05 05ih,=01 02hs=06 03 interested reader is referred fo [19], [62].

hs= 05hs= 0:8+1i;

B. Channel Equalization

andx, = t, +( 0:1+0:08)ta. Recall that, while CKLMS  The non-linear channel considered in this case consists of
keeps the information of the rst channel throughout thg linear lter:

training phase, as the coefcients associated with the rst _ _

lter remain in the associated expansion, CKAPSM is able th=( 0:9+0:8)) sn+(0:6 07i) sn 1

to “forget” the information provided by the original chatnegnq 5 memoryless nonlinearity

via the shrinking process, which has been described incsecti

The novelty criterion sparsi cation mechanism wa®ds Xn =ty +(0:1+0:15) t7 +(0:06 +0:05) t:

for the NCKLMS and ANCKLMS algorithms with parameters . : :
=0:15and , = 0:2. The radius of the closed ball for theAt the receiver end of the channel the signal is corrupted by

o : white Gaussian noise and then observerhag he input signal
CKAPSM and ACKAPSM sparsi cation technique was set t(t)hat was fed to the channels had the fg;m P g
=10 .
The values of the parameters used in the algorithms are: sh =05 1 22X ,+iY, ; (29)

= 5 (for both the real gaussian kernel and the complex ) )
gaussian kernel)g = 5 or g = 20 (this is shown in each Where X(n) and Y(n) are gaussian or uniform random
gure), =10 °and o =4. variables. The level of the noise was seR2@@B. The aim of a

channel equalization task is to construct an inverse {tdrich
"Hence, the input of the channelss and the output, . acts on the output, and reproduces the original input signal
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= 1=4), CKAPSM and ACKAPSM ( ltef lengthL = 5) for the nonlinear channel

2=2) and (b) the non-circular input case

( =0:1). In the realization of the CKAPSM and ACKAPSM tlig norm was employed.
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as close as possible. To this end, we apply the algorithmsR&HS, where the learning phase is taking place (based on the
the set of samples Adaptive Projected Subgradient Method), using both linear
and widely linear estimation Iters. The complex RKHS is
implicitly de ned through the choice of the kernel function
whereL > 0 is the Iter length andD the equalization time Both pure complex kernels (such as the complex gaussian one)
delay, which is present to, almost, any equalization set ugs well as real kernels can be employed. Furthermore, any
Experiments were conducted on 300 sets of 5000 samplescofivex continuous function, whose subgradient is givemin a
the input signal considering both the circular and the noanalytic form, can be exploited to measure the loss between
circular case. The results were compared to the NCKLMS atfte output of the specic system and the desired response.
ANCKLMS, which have been shown to perform signi cantlyTo compute the subgradients of loss functions de ned on
better than other complex non-linear techniques such assML&®@mplex RKHS, the notion of Wirtinger's subgradient hasrbee
and CNGD [[19]. The values of the parameters used in tigroduced, and related subgradients have been derived for

algorithms are:
and the complex gaussian kernet),= 5,

= 5 (for both the real gaussian kernelnumber of popular cost functions. The effectiveness of the
= 10 ® and proposed framework has been demonstrated in several non-

o = 4. The sparsi cation mechanism adopted for this cadwear adaptive ltering tasks.

was identical to the one employed in the channel identi@ati
paradigm. As it can be seen in gur€$ [H, 6, CKAPSM and
ACKAPSM converge more rapidly to the steady state mean
square error, than NCKLMS and ANCKLMS (which have ]
almost overlapping learning curves). 2]

C. QPSK Equalization (3]

In this case, we considered the non-linear channel whicH!
consists of the linear Iter: [5]

th=( 09+0:8i) s, +(0:6 0:7i) s, 1 (6]
and the memoryless nonlinearity

.
Xp =ty +(0:1+0:15) t2: 71

At the receiver end of the channel the signal is corrupted by
white Gaussian noise and then observer,ag he input signal
that was fed to the channel consisted of the 4 QPSK symbolﬁ]
s;=1+1i,s,=1 i,s3= 1+iandsgz= 1 i.Both
the circular and the non-circular input case were consitlere
For the rst case, the 4 symbols are equiprobable, whifé®!
in the later their probabilities for occurrence in the input
sequence arg; = 1=10, p, = 3=10, p3 = 2=10 and [11]
ps = 4=10, respectively (applications of non equiprobable
symbol channels can be found in_[66]). The objective in thigy
task is to construct an inverse lter, which acts on the otitpu
and reproduces the original input symbols as close as pessib
Experiments were performed on 100 sets of 10000 inpyé
symbols. In the circular case, the NCKLMS and CKAPSM
exhibit similar performance reaching a steady state medh S
of 0.0039 and 0.0034 respectively. For the non-circulaeca:
NCKLMs attained a steady state mean SER of 0.005, whits)
the steady state mean SER of CKAPSM reached 0.0036 (i.e.,
a decrease 0£8%). The values of the parameters used in
the CKAPSM algorithm are: =5,q=5, =10 & and [16]
o = 4. Figure[T shows the SER versus SNR curves of those
algorithms. [17]

4]

VI. CONCLUSIONS
[18]

A general tool for treating non-linear adaptive Itering
problems of complex valued signal processing, on compl%
Reproducing Kernel Hilbert Spaces, has been developed. ]IH
this context, the complex input data are mapped into a cample
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